DEPARTMENTS
Dr. Maneesh Chandran
Dr. Maneesh Chandran

Asst. Professor (grade I)

Office Address:

PH 117(A) Department of Physics National Institute of Technology Calicut Kerala, India 673 601

Contact no:

5119

Email ID:

maneesh@nitc.ac.in

Home Address:

  • Ph.D. : Indian Institute of Technology, Madras (2013)

  • M.Tech. : Indian Institute of Technology, Madras (2006)

  • M.Sc. : Cochin University of Science & Technology, Cochin (2003)

  • Educational Qualifications

    • Ph.D. : Indian Institute of Technology, Madras (2013)

    • M.Tech. : Indian Institute of Technology, Madras (2006)

    • M.Sc. : Cochin University of Science & Technology, Cochin (2003)

    Journals

    1. D Das, R Raj, J Jana, S Chatterjee, LG Kolla, Maneesh Chandran, MSR Rao, Diamond- The Ultimate Material for Exploring Physics of Spin-defects for Quantum Technologies and Diamontronics, J. Phys. D: Appl. Phys., 55, 333002, 2022.

    2.  Manjusha E, Maneesh Chandran, Status review of the science and technology of PZT/ diamond heterostructures and their applications, Journal of Materials Research, 36, 4725, (2021).

    3.  E. Suaebah, M. Hasegawa, J. J. Buendia, W. Fei, Maneesh Chandran, A. Hoffman, H. Kawarada, Functionalization of a Diamond Surface through N2 and H2 Irradiation for Estrogen (17β-estradiol) Aptamer Sensing, Sensors and Materials, 31, 1119 (2019).

    4. M. Attrash, M.K. Kuntumalla, Maneesh Chandran, R. Akhvlediani, A. Hoffman, Hydrogen retention and nitrogen distribution in delta-doped diamond films, Mater Today Commun. 17, 413 (2018).

    5. D. Kumar, Maneesh Chandran, D.K. Shukla, D.M. Phase, K. Sethupathi, M.S.R. Rao, Tc suppression and impurity band structure in overdoped superconducting Boron-doped diamond films, Physica C 555, 28 (2018).

    6.  M. K. Kuntumalla, S. Elfimchev, Maneesh Chandran, R. Akhvlediani and A. Hoffman, Raman scattering of nitrogen incorporated diamond thin films grown by hot filament CVD, Thin Solid Films 653, 284 (2018).

    7. Maneesh Chandran, S. Elfimchev, Sh. Michaelson, R. Akhvlediani, O. Ternyak and A. Hoffman, Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates, J. Appl. Phys. 122, 145303 (2017).

    8. S. Cherf, Maneesh Chandran, Sh. Michaelson, S. Elfimchev, R. Akhvlediani and A. Hoffman, Nitrogen and hydrogen content, morphology and phase composition of hot filament chemical vapor deposited diamond films from NH3/CH4/H2 gas mixtures, Thin Solid Films 638, 264 (2017).

    9. D. Kumar, Maneesh Chandran and M. S. R. Rao, Effect of boron doping on first order Raman scattering in superconducting boron doped diamond films, Appl. Phys. Lett. 110, 191602 (2017).

    10. S. Elfimchev, Maneesh Chandran, R. Akhvlediani and A. Hoffman, Visible sub-bandgap photoelectron emission from nitrogen doped and undoped polycrystalline diamond films, Appl. Surf. Sci. 15, 414 (2017).

    11. Maneesh Chandran, F. Sammler, E. Uhlmann, R. Akhvlediani and A. Hoffman, Wear performance of diamond coated WC-Co tools with a CrN interlayer, Diamond Rel. Mater. 73, 47 (2017).

    12. G. Vasanth, Maneesh Chandran, M. S. R. Rao, S. Mischler, S. Cao and G. Manivasagam, Tribocorrosion and electrochemical behavior of nanocrystalline diamond coated Ti based alloys for orthopedic application, Tribol. Int. 106, 88 (2017).

    13. Maneesh Chandran, Sh. Michaelson, C. Saguy and A. Hoffman, Fabrication of a nanometer thick nitrogen delta doped layer at the sub-surface region of (100) diamond, Appl. Phys. Lett. 109, 221602 (2016).

    14. M. Fischer, Maneesh Chandran, R. Akhvlediani and A. Hoffman, Interplay between adhesion and interfacial properties of diamond films deposited on WC-10%Co substrates using a CrN interlayer, Diamond Rel. Mater.  70, 167 (2016).

    15. Maneesh Chandran, M. Shasha, Sh. Michaelson and A. Hoffman, Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy, Appl. Surf. Sci. 382, 192 (2016).

    16. Maneesh Chandran and A. Hoffman, Diamond film deposition of on WC-Co and steel substrates with a CrN interlayer for tribological applications (Invited Review article), J. Phys. D: Appl. Phys. 49, 213002 (2016).

    17. Sh. Michaelson, Maneesh Chandran and A. Hoffman, Evidence for D2 dissociative chemisorption and electron affinity changes of bare and ion beam damaged polycrystalline diamond surfaces, Diamond Rel. Mater. 63, 26 (2016).

    18. S. Dhankhar, K. Gupta, G. Bhalerao, N. Shukla, Maneesh Chandran, B. Francis, B. Tiwari, K. Baskar, and S. Singh, Anomalous room-temperature magnetoresistance in brownmillerite Ca2Fe2O5, RSC Adv. 5, 92549 (2015).

    19. S. Elfimchev, Maneesh Chandran, Sh. Michaelson, R. Akhvlediani and A. Hoffman, Trap-assisted photon-enhanced thermionic emission from polycrystalline diamond films, Phys. Status Solidi A 212, 2583 (2015).

    20. Maneesh Chandran, M. Shasha, Sh. Michaelson and A. Hoffman, Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies, Appl. Phys. Lett. 107, 111602 (2015).

    21. Maneesh Chandran, M. Shasha, Sh. Michaelson, R. Akhvlediani and A. Hoffman, Incorporation of nitrogen into polycrystalline diamond surfaces by RF plasma nitridation process at different temperatures: Bonding configuration and thermal stability studies by in-situ XPS and HREELS, Phys. Status Solidi A 212, 2487 (2015).

    22. Sh. Michaelson, Maneesh Chandran, S. Zalkind, N. Shamir, R. Akhvlediani and A. Hoffman, Dissociative adsorption of molecular deuterium and thermal stability onto hydrogenated, bare and ion beam damaged poly- and single crystalline diamond surfaces, Surf. Sci. 642 16 (2015).

    23. M. Fischer, Maneesh Chandran, R. Akhvlediani and A. Hoffman, The influence of deposition temperature on the adhesion of diamond films deposited on WC-Co substrates using a CrN interlayer, Phys. Status Solidi A 212, 2628 (2015).

    24. R. Dumpala, Maneesh Chandran and M. S. R. Rao, Engineered CVD diamond coatings for machining and tribological applications (Invited Review article), JOM, 67 1565 (2015).

    25. C. R. Kumaran, Maneesh Chandran, M. K. Surendra, S. S. Bhattacharya and M. S. R. Rao, Growth and Characterization of diamond particles, diamond films and CNT-diamond composite films deposited simultaneously by hot filament CVD, J. Mater. Sci. 50 144 (2015).

    26. R. Dumpala, Maneesh Chandran, S. Madhavan, B. Ramamoorthy and M. S. R. Rao, High wear performance of the dual-layer graded composite diamond cutting tools, Int. J Refract. Met. H 48 24 (2015).

    27. Maneesh Chandran, C. R. Kumaran, R. Dumpala, P. Shanmugam, R. Natarajan, S. S. Bhattacharya and M. S. R. Rao, Nanocrystalline diamond coatings on the interior of WC-Co dies for drawing carbon steel tubes: Enhancement of tube properties, Diamond Rel. Mater. 50 33 (2014).

    28. S. Elfimchev, Sh. Michaelson, R. Akhvlediani, Maneesh Chandran, H. Kaslasi and A. Hoffman, The impact of surface hydrogenation on the thermionic electron emission from polycrystalline diamond films, Phys. Status Solidi A 211 2238 (2014).

    29. E. S. Kumar, Maneesh Chandran, F. Bellarmine, R. Mannam, D. Nakamura, M. Higashihata, T. Okada and M. S. R. Rao, Formation of one-dimensional ZnO nanowires from screw-dislocation driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition, J. Phys. D: Appl. Phys. 47 034016 (2014).

    30. C. R. Kumaran, B. Tiwari, Maneesh Chandran, S. S. Bhattacharya and M. S. R. Rao, Effect of temperature on the stability of diamond particles and continuous thin films by Raman imaging, J. Nanopart. Res. 15 1509 (2013).

    31. R. Dumpala, Maneesh Chandran, N. Kumar, S. Dash, B. Ramamoorthy and M. S. R. Rao, Growth and characterization of integrated nano-and microcrystalline dual layer composite diamond coatings on WC-Co substrates, Int. J Refract. Met. H 37 127 (2013).

    32. Maneesh Chandran, C. R. Kumaran, S. Gowthama, P. Shanmugam, R. Natarajan, S. S. Bhattacharya and M. S. R Rao, Chemical vapor deposition of diamond coatings on tungsten carbide (WC-Co) riveting inserts, Int. J Refract. Met. H 37 117 (2013).

    33. D. Durgalakshmi, Maneesh Chandran, G. Manivasagam, M. S. R. Rao, R. Asokamani, Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys, Tribol. Int. 63 132 (2013).

    34. Maneesh Chandran, G. V. Chakravarthy*, S. S. Bhattacharya, M. S. R. Rao and M. Kamaraj, A comparative study on wear behavior of TiN and diamond coated WC-Co substrates against hypereutectic Al-Si alloys, Appl. Surf. Sci. 261 520 (2012) (*equal contributor).

    35. Maneesh Chandran, C. R. Kumaran, S. Vijayan, S. S. Bhattacharya and M. S. R. Rao, Adhesive microcrystalline diamond coating on surface modified non-carbide forming substrate using hot filament CVD, Mater. Express 2 115 (2012).

    36. Maneesh Chandran, B. Tiwari, C. R. Kumaran, S. K. Samji, S. S. Bhattacharya and M. S. R. Rao, Integration of perovskite PZT thin films on diamond substrate without buffer layer, J. Phys. D: Appl. Phys. (Fast Track Communications) 45 202001(2012). 

    37. Maneesh Chandran, M. Kant, N. Rama and M. S. R. Rao, PLD Growth of CNTs using a Nanostructured Ni Buffer Layer: Dependence of H2 Partial Pressure, Mater. Res. Soc. Symp. Proc. 951 0951-E06-15 (2007).

    Conferences

    1.  M Eledath, S Vishwanathan, Maneesh Chandran, Sol-Gel Synthesis of Multifunctional Bismuth Ferrite Nanostructures: Effect of Heating Conditions on their Photocatalytic Activity, IOP Conference Series: Materials Science and Engineering1221, 012044, (2022).

    2. AC Swathi, Maneesh Chandran, Photocatalytic performance of g-C3N4/Bi2S3/MWCNT ternary nanocomposite, IOP Conference Series: Materials Science and Engineering1221, 012043, (2022).

    Books (Refereed)

    • Maneesh Chandran, Diamond deposition on WC-Co substrates with interlayers for engineering applications, Chapter 14 in the book: Nanomaterials for Sensing and Optoelectronic Applications (Elsevier), ed. M. K. Jayaraj, P. P. Subha, Shibi Thomas.

    • Maneesh Chandran, Synthesis Characterization and Applications of Diamond Films, Chapter 6 in the book: Carbon-Based Nanofillers and their Rubber Nanocomposites (Elsevier), ed. S. Thomas, N. Kalarikkal, S. Yaragalla, H. J. Maria, R. K. Mishra. 

    Professional Experience

    • Assistant Professor, Department of Physics, NIT Calicut (05/2018 onwards)

    • Research Assistant Professor, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chennai, India (07/2017 - 05/2018)

    • Schulich Fellow (Postdoctoral), Technion- Israel Institute of Technology, Haifa, Israel (01/2014 - 06/2017)

    • Research Associate, Department Physics, Indian Institute of Technology Madras, Chennai, India (03/2013 - 12/2013)

    Research

    Research Interests

    • Surface and Interface Science

    • Carbon-based Nanomaterials (Diamond, Graphene, and CNTs), Perovskite solar cells

    • UHV Spectroscopy and Microscopy (HREELS, XPS, NEXAFS, Raman, and STM)

    • Thin Film Deposition Techniques (CVD, PLD, and Sputtering)

    Current Research

    Surface science has emerged significantly during the last two decades due to major scientific breakthroughs (2D materials and topological insulators) and the relevance of nanotechnology. Diamond surface science is an emerging area of research, which is my current focus. Diamond is always a fascinating material for scientists, exhibiting high hardness (~100 GPa), extreme thermal conductivity (2000 Wm-1K-1) and wide optical transparency (Eg=5.4 eV). Termination/ functionalization of the diamond surface with different functional groups (H, N, and O) is always a matter of fundamental interest, as it modifies the surface electronic properties. The recent surge of interest on surface termination of diamond comes from the remarkable physical properties of nitrogen-vacancy centers (NVˉ) in diamond, which has attracted a great attention in single photon sources, quantum information processing, and nanoscale magnetic sensing applications. The directions and scope of the ongoing/future research are the following:

    • Surface electronic properties of diamond

    The main objective of this research is to investigate the surface properties of NVˉ center in diamond, which has spin depended fluorescence and exceptionally long coherence times. However, the spin properties of shallow NVˉ centers (<5 nm from diamond surface) are adversely affected by the surface defects and free spins on the surface. A challenging, but rewarding goal is to stabilize the negative charge state at shallow depths by proper surface termination, which requires a systematic investigation of the surface properties of diamond under well-controlled conditions. The long-term objective of this work is to realize stable, shallow NVˉ centers in diamond with long spin coherence times for nanoscale magnetic sensing applications.  

    • Diamond-based PETE solar energy conversion 

    The concept of harvesting photon and thermal energy together through photon-enhanced thermionic emission (PETE) is appealing since its theoretical efficiency (>50%) exceeds the Shockley-Queisser limits on single-junction solar cells. This invention catapulted the electron emission properties of hydrogen or alkali metal terminated diamond surfaces, which possess negative electron affinity. The long-term objective of this research is to fabricate an efficient PETE module for practical use by systematically investigating the combined photon/thermal electron emission process of hydrogen or alkali metal (Li/Mg) terminated diamond and group III-V semiconductors. 

    • Tribological applications of diamond coatings

    This research aims to develop diamond coated tools for machining fiber-reinforced composites and hypereutectic Al-Si alloys, which are extensively used in the aerospace and automobile industries nowadays. These materials are difficult, if not impossible, to machine using conventional cutting tools. One of the major challenges is the adhesion of the deposited films, which will be addressed by engineering the interface of diamond coating and by using suitable interlayer materials. The long-term objective of this research is to develop adherent diamond coated tools for machining Al-Si alloys and other hard composite materials, in collaboration with industries. 

    • Biomedical applications of diamond

    Recent developments suggest that functionalized diamond nanoparticles will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years. However, several challenges need to overcome to facilitate the translation of diamond films/particles for clinical use. The research will be carried out to improve the service life of biomedical implants by depositing nanocrystalline diamond coatings on artificial implants (e.g., heart valves, hip, and knee joints) at moderate temperatures. In addition, the cytotoxicity of the composite coatings will be assessed and the tribological properties of the composite coatings in simulated body fluids will be investigated. Furthermore, the research will shed new light on the basic scientific issues related to the interactions between nano-diamond and human tissues. 

    • Diamond-based SAW devices

    Surface acoustic wave (SAW) devices are commonly used in wireless communication technology. The operating frequency of a SAW device is mainly limited by the choice of the material. Diamond possesses the highest acoustic wave velocity (18,000 m/s) amongst all materials, but unfortunately, it is not piezoelectric, so it needs to be combined with a piezoelectric film (perovskite PZT or AlN). This research aims to develop the direct integration of piezoelectric materials on diamond substrates for high-frequency SAW/microelectromechanical (MEMS) device applications. The long-term objective of this research is to fabricate the prototype of a diamond-based SAW device that can operate in the gigahertz range frequencies.

    • Perovskite Solar Cells

    Perovskite solar cells have the desired properties and enormous potential compared to the existing solar PV technologies. The power conversion efficiencies of perovskite solar cells have risen from 3.8% to 22% within a short span of time. Their instability under ambient conditions and the toxicity of lead (Pb) are considered to be the major hindrances. This research aims to address these issues through systematic studies, thereby a new era of low-cost, high-efficiency solar cells could be realized in the solar PV industry. 

    Postdoctoral positions:

    • Interested candidates can directly contact the group leader.

    Ph.D. Students

    • Looking for highly motivated candidates.

    B.Tech/M.Sc/M.Tech students

    • Interested (internal) candidates can directly contact the group leader

     

    Taught the following courses

    • B.Tech- APPLICATIONS OF NANOTECHNOLOGY

    • B.Tech- LITHOGRAPHIC TECHNIQUES AND FABRICATION

    • B.Tech- ANALOG ELECTRONICS

    • B.Tech- THIN FILM TECHNOLOGY

    • B.Tech- EXPERIMENTAL TECHNIQUES IN PHYSICS

    • B.Tech- FIRST YEAR PHYSICS

    • B.Tech- FIRST YEAR PHYSICS LABORATORY

    • B.Tech- ELECTRONICS LABORATORY

    • M.Sc- SOLID STATE DEVICES

    • M.Sc- EXPERIMENTAL TECHNIQUES

    • M.Sc- CONDENSED MATTER PHYSICS

    • M.Sc- ELECTRONICS LABORATORY

    • M.Sc- GENERAL PHYSICS LABORATORY

    Dr. Maneesh Chandran joined the Department of Physics at NIT Calicut in May 2018. He received his Ph.D. in Physics from IIT Madras. He was the recipient of Schulich Fellowship (Postdoctoral) from Technion- Israel Institute of Technology, Israel. His research mainly focuses on the physical/chemical properties of diamond and related materials for various applications.

    • Maneesh Chandran and M. S. R. Rao, Piezoelectric devices and methods for their preparation and use, US Patent # 9362378 B2.

    • Maneesh Chandran and M. S. R. Rao, Methods for synthesis of diamond thin films/coatings on sapphire substrates and their applications, IN Patent # 4225/CHE/2013.