# Four Neighbourhood Cellular Automata as Better Cryptographic Primitives 

Jimmy Jose Dipanwita Roy Chowdhury<br>Crypto Research Laboratory,<br>Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India

June 8-10, 2015

## Introduction

- 3-neighbourhood CA has good crypto properties.
- Can 4-neighbourhood CA be a better cryptographic primitive?
- increase in neighbourhood radius increase
- diffusion
- randomness
- correlation immunity
- current work analyses cryptographic suitability of 4-neighbourhood CA


## Motivation

Advantages of 3-neighbourhood CA

- diffusion
- randomness

Disadvantages of 3-neighbourhood CA

- no 3-neighbourhood nonlinear balanced rule is correlation immune [2]
- CA using these rules are susceptible to correlation attacks
- Meier-Staffelbach Attack on CA rule 30


## Literature

- analysis of 1-resilient 4-neighbourhood CA rules [3]
- analysis of 1-resilient 5-neighbourhood CA rules [5]
- nonlinear and resilient rules from 5-neighbourhood bipermutative CA rules [4]


## Our Contribution

- constructed a class of 4-neighbourhood CA
- rule structure functionally resemble 3-neighbourhood CA rule 30
- studied cryptographic properties of this class
- inapplicability of Meier-Staffelbach attack [1] on 4-neighbourhood CA is shown


## 4-neighbourhood CA



Figure: Single Cell in Left Skewed and Right Skewed 4-neighbourhood CA

- left skewed CA - the cells in the CA depend on two left, itself, and one right cells for their update
- right skewed CA - the cells in the CA depend on one left, itself, and two right cells for their update


## 4-neighbourhood Linear Hybrid CA



Rule 21930: $q_{i}(t+1)=q_{i-2}(t) \oplus q_{i+1}(t)$
Rule 39270: $q_{i}(t+1)=q_{i-2}(t) \oplus q_{i}(t) \oplus q_{i+1}(t)$
Figure: 4-neighbourhood Linear Hybrid CA based on rules 21930, 39270 (left skewed)

## Cryptographic Properties

- Nonlinearity
- Balancedness
- Correlation Immunity


## Cryptographic Properties

## Nonlinearity

the number of bits that must change in the truth table of the Boolean function such that it matches the truth table of the nearest affine function Nonlinearity of $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2} \oplus 1$ is 0 and $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2} \oplus x_{2}$ is 1

## Balancedness

if the number of 0 's and number of 1 's in the truth table of a Boolean function are equal, then the function is balanced $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2} \oplus 1$ is balanced but $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2} \oplus x_{2}$ is not

## Cryptographic Properties

## Correlation Immunity

A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is $m$-th order Correlation Immune if for every subset of $m$ or fewer variables in $x_{1}, \ldots, x_{n}$, the probability of $f$ to take 0 and 1 is not changed given that the values of variables in the subset are fixed in advance while the value of the remaining variables are chosen independently at random
Correlation Imminity of $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2} \oplus 1$ is 1 and $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2} \oplus x_{2}$ is 0

## 3-neighbourhood Rules 30 and 246

$$
\begin{aligned}
& \text { Rule 30: } q_{i}(t+1)=q_{i-1}(t) \oplus\left(q_{i}(t)+q_{i+1}(t)\right) \\
& \text { Rule 246: } q_{i}(t+1)=q_{i-1}(t)+\left(q_{i}(t) \oplus q_{i+1}(t)\right)
\end{aligned}
$$

Table: Cryptographic Properties of 3-neighbourhood Rules 30 and 246

| sl. no. | Rule No | Nonlinearity |  |  |  | Balancedness |  |  |  | Correlation Immunity |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  |  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |  |  |
| 1 | 30 | 2 | 4 | 36 | True | True | True | 0 | 0 | 0 |  |  |
| 2 | 246 | 2 | 6 | 22 | False | False | False | 0 | 0 | 0 |  |  |

## Nonlinear Rules Resembling Rule 30

Table: Four-neighbourhood Nonlinear Rules

| sl. no. | Rule No | Left Skewed Rule | sl. no. | Rule No | Left Skewed Rule |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 510 | $q_{i-2} \oplus\left(q_{i-1}+q_{i}+q_{i+1}\right)$ | 14 | 50070 | $q_{i-1} \oplus q_{i} \oplus\left(q_{i-2}+q_{i+1}\right)$ |
| 2 | 854 | $\left(q_{i-2}+q_{i+1}\right) \oplus\left(q_{i-1}+q_{i}\right)$ | 15 | 51510 | $q_{i-2} \oplus q_{i} \oplus\left(q_{i-1}+q_{i+1}\right)$ |
| 3 | 1334 | $\left(q_{i-2}+q_{i}\right) \oplus\left(q_{i-1}+q_{i+1}\right)$ | 16 | 57630 | $q_{i-2} \oplus q_{i-1} \oplus\left(q_{i}+q_{i+1}\right)$ |
| 4 | 3870 | $\left(q_{i-1} \oplus\left(q_{i-2}+q_{i}+q_{i+1}\right)\right.$ | 17 | 60350 | $\left(q_{i-2} \oplus q_{i-1} \oplus q_{i}\right)+q_{i+1}$ |
| 5 | 4382 | $\left(q_{i-2}+q_{i-1}\right) \oplus\left(q_{i}+q_{i+1}\right)$ | 18 | 60894 | $\left(q_{i-2} \oplus q_{i-1} \oplus q_{i+1}\right)+q_{i}$ |
| 6 | 13110 | $q_{i} \oplus\left(q_{i-2}+q_{i-1}+q_{i+1}\right)$ | 19 | 61438 | $\left(q_{i}+q_{i+1}\right)+\left(q_{i-2} \oplus q_{i-1}\right)$ |
| 7 | 21846 | $q_{i+1} \oplus\left(q_{i-2}+q_{i-1}+q_{i}\right)$ | 20 | 63990 | $\left(q_{i-2} \oplus q_{i} \oplus q_{i+1}\right)+q_{i-1}$ |
| 8 | 28662 | $\left(q_{i-2} \oplus q_{i-1}\right)+\left(q_{i} \oplus q_{i+1}\right)$ | 21 | 64510 | $\left(q_{i-1}+q_{i+1}\right)+\left(q_{i-2} \oplus q_{i}\right)$ |
| 9 | 31710 | $\left(q_{i-2} \oplus q_{i}\right)+\left(q_{i-1} \oplus q_{i+1}\right)$ | 22 | 65022 | $\left(q_{i-1}+q_{i}\right)+\left(q_{i-2} \oplus q_{i+1}\right)$ |
| 10 | 32190 | $\left(q_{i-2} \oplus q_{i+1}\right)+\left(q_{i-1} \oplus q_{i}\right)$ | 23 | 65430 | $\left(q_{i-1} \oplus q_{i} \oplus q_{i+1}\right)+q_{i-2}$ |
| 11 | 39318 | $q_{i} \oplus q_{i+1} \oplus\left(q_{i-2}+q_{i-1}\right)$ | 24 | 65470 | $\left(q_{i-2}+q_{i+1}\right)+\left(q_{i-1} \oplus q_{i}\right)$ |
| 12 | 42390 | $q_{i-1} \oplus q_{i+1} \oplus\left(q_{i-2}+q_{i}\right)$ | 25 | 65502 | $\left(q_{i-2}+q_{i}\right)+\left(q_{i-1} \oplus q_{i+1}\right)$ |
| 13 | 43350 | $q_{i-2} \oplus q_{i+1} \oplus\left(q_{i-1}+q_{i}\right)$ | 26 | 65526 | $\left(q_{i-2}+q_{i-1}\right)+\left(q_{i} \oplus q_{i+1}\right)$ |

## Cryptographic Properties of the Selected Rules

| sl. no. | Rule No | Nonlinearity |  |  |  | Balancedness |  |  | Correlation Immunity |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 0 |  |
| 1 | 510 | 2 | 28 | 224 | True | True | True | 0 | 0 | 0 |  |
| 2 | 854 | 6 | 38 | 366 | False | False | False | 0 | 0 | 0 |  |
| 3 | 1334 | 6 | 30 | 412 | False | False | False | 0 | 0 | 0 |  |
| 4 | 3870 | 2 | 32 | 272 | True | True | False | 0 | 0 | 0 |  |
| 5 | 4382 | 6 | 42 | 412 | False | False | False | 0 | 0 | 0 |  |
| 6 | 13110 | 2 | 32 | 272 | True | True | False | 0 | 0 | 0 |  |
| 7 | 21846 | 2 | 28 | 224 | True | True | True | 0 | 0 | 0 |  |
| 8 | 28662 | 4 | 40 | 304 | False | False | False | 0 | 0 | 0 |  |
| 9 | 31710 | 4 | 40 | 392 | False | False | True | 0 | 0 | 1 |  |
| 10 | 32190 | 4 | 48 | 400 | False | False | False | 0 | 0 | 0 |  |
| 11 | 39318 | 4 | 32 | 368 | True | True | True | 1 | 1 | 1 |  |
| 12 | 42390 | 4 | 40 | 408 | True | True | True | 1 | 0 | 1 |  |
| 13 | 43350 | 4 | 48 | 384 | True | True | True | 1 | 2 | 1 |  |

## Cryptographic Properties of the Selected Rules (continued)

| sl. no. | Rule No | Nonlinearity |  |  |  | Balancedness |  |  | Correlation Immunity |  |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 0 |  |
| 14 | 50070 | 4 | 52 | 428 | True | False | False | 1 | 0 | 0 |  |
| 15 | 51510 | 4 | 40 | 408 | True | True | True | 1 | 0 | 1 |  |
| 16 | 57630 | 4 | 32 | 368 | True | True | True | 1 | 1 | 1 |  |
| 17 | 60350 | 4 | 16 | 60 | False | False | False | 0 | 0 | 0 |  |
| 18 | 60894 | 4 | 16 | 92 | False | False | False | 0 | 0 | 0 |  |
| 19 | 61438 | 2 | 2 | 2 | False | False | False | 0 | 0 | 0 |  |
| 20 | 63990 | 4 | 16 | 92 | False | False | False | 0 | 0 | 0 |  |
| 21 | 64510 | 2 | 3 | 5 | False | False | False | 0 | 0 | 0 |  |
| 22 | 65022 | 2 | 2 | 2 | False | False | False | 0 | 0 | 0 |  |
| 23 | 65430 | 4 | 16 | 60 | False | False | False | 0 | 0 | 0 |  |
| 24 | 65470 | 2 | 4 | 8 | False | False | False | 0 | 0 | 0 |  |
| 25 | 65502 | 2 | 3 | 5 | False | False | False | 0 | 0 | 0 |  |
| 26 | 65526 | 2 | 2 | 2 | False | False | False | 0 | 0 | 0 |  |

## Meier-Staffelbach Attack

From the state values of the $i$-th cell - temporal sequence - for $n+1$ time steps from $t$ to $t+n$, the attack tries to find the state value of cells at the $t$-th time step

Exploits the many-to-one mapping from the right-hand initial states to the temporal sequence or its adjacent sequence

## Meier-Staffelbach Attack (Continued)

Triangle for 3-neighbourhood Rules

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{i}-\mathrm{n}}(\mathrm{t}) \quad * \quad \ldots \quad * \mathrm{q}_{\mathrm{i}-1}(\mathrm{t}) \\
& \text { * } \quad . . \quad * q_{i-1}(t+1) \\
& q_{i}(t) \\
& q_{i+1}(t) \quad * \ldots * q_{i+n}(t) \\
& q_{i}(t+1) \\
& \mathrm{q}_{\mathrm{i}+1}(\mathrm{t}+1) * \ldots * \\
& \text {. } \\
& \text { * }
\end{aligned}
$$

Figure: Triangle determined by initial site vector $q_{i-n}(t), \ldots, q_{i+n}(t)$ for

## Attack Principle

- A random set of values for right-hand initial states may give correct right adjacent sequence even if the values were wrong
- Knowledge of right adjacent sequence is equivalent to knowledge of seed


## Meier-Staffelbach Attack on 4-neighbourhood CA

Triangle for 4-neighbourhood Rules

| $\mathrm{q}_{\mathrm{i} 2 \mathrm{2}}(\mathrm{t})$ | $\mathrm{q}_{\mathrm{i}-2 n+1}(\mathrm{t})$ | * ... | * | $\mathrm{q}_{\mathrm{i}-2}(\mathrm{t})$ | $\mathrm{q}_{\mathrm{i}-1}(\mathrm{t})$ | $q_{i}(t)$ | $\mathrm{q}_{i+1}(\mathrm{t})$ | * ... * $\mathrm{q}_{\mathrm{i}+\mathrm{n}}(\mathrm{t})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | * ... | * | $\mathrm{q}_{\mathrm{i}-2}(\mathrm{t}+1)$ | $\mathrm{q}_{\mathrm{i}-1}(\mathrm{t}+1)$ | $\mathrm{q}_{\mathrm{i}}(\mathrm{t}+1)$ | $\mathrm{q}_{i+1}(\mathrm{t}+1)$ | * ... * |
|  |  |  |  | . | . | - | . |  |
|  |  |  | * | . | . | - | . | * |
|  |  |  |  | . | . | . | . |  |
|  |  |  |  | * | * | * | * |  |
|  |  |  |  |  |  | $q_{i}(t+n)$ |  |  |

Figure: Triangle determined by initial site vector $q_{i-2 n}(t), \ldots, q_{i+n}(t)$ for 4-neighbourhood rules

## Meier-Staffelbach Attack on 4-neighbourhood CA (continued)

- Right-hand initial states not sufficient to compute right adjacent sequence
- Knowledge of right adjacent sequence is not sufficient to compute the seed


## Example with a 4-neighbourhood CA rule

LHS of the triangle
Rule 57630: $q_{i}(t+1)=q_{i-2}(t) \oplus q_{i-1}(t) \oplus\left(q_{i}(t)+q_{i+1}(t)\right)$
calculation of right adjacent sequence needs left adjacent sequence too (not known) unlike 3-neighbourhood CA
RHS of the triangle
Rewriting : $q_{i+1}(t+1)=q_{i-1}(t) \oplus q_{i}(t) \oplus\left(q_{i+1}(t)+q_{i+2}(t)\right)$
Rearranging: $q_{i-1}(t)=q_{i+1}(t+1) \oplus q_{i}(t) \oplus\left(q_{i+1}(t)+q_{i+2}(t)\right)$
to find the values in cells at column $i-1$, we require the values in column $i+2$ also (unlike 3 -neighbourhood CA) in addition to the values in columns $i$ and $i+1$

## Comparison

If $K_{s}$ - the seed
$K_{r 1}$ - the right adjacent sequence
$K_{r 2}$ - the sequence to the right of right-adjacent sequence
In 3-neighbourhood CA, $F:\left\{K_{s}\right\} \rightarrow\left\{K_{r 1}\right\}$
In 4-neighbourhood CA, $F:\left\{K_{s}\right\} \rightarrow\left\{K_{r 1}, K_{r 2}\right\}$

## Conclusion

- studied the cryptographic suitability of a class of 4-neighbourhood nonlinear CA rules
- shown the inapplicability of Meier-Staffelbach attack against 4-neighbourhood CA


## References

Meier, W., Staffelbach, O.:Analysis of pseudo random sequences generated by cellular automata. In: EUROCRYPT '91. pp. 186-199 (1991)

Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory 30(5), 776-780 (1984)
國 Lacharme, P., Martin, B., Solé, P., et al.: Pseudo-random sequences, boolean functions and cellular automata. Proceedings of BFCA pp. 80-95 (2008)

Leporati, A., Mariot, L.: 1-resiliency of bipermutive cellular automata rules. In: AUTOMATA 2013. pp. 110-123 (2013)

Formenti, E., Imai, K., Martin, B., Yunés, J-B.: Advances on random sequence generation by uniform cellular automata. In: Computing with New Resources, pp. 56-70 (2014)

## Thank You

