Sheet No: 7

Application of Straight lines

1. Two oranges on a tree are respectively 1.8 m and 3 m above the ground, and 1.2 m and 2.1 m from a 0.3 m thick wall, but on opposite sides of it. The distance between the oranges, measured along the ground and parallel to the wall is 2.7 m . Determine the real distance between the oranges.
2. Two lines AB and AC make an angle of 120° between them in their front view and top view. $A B$ is parallel to both the H.P. and the VP. Determine the real angle between AB and AC.
3. Draw an isosceles triangle abc of base $a b 40 \mathrm{~mm}$ and altitude 75 mm with a in xy and ab inclined at 45° to xy . The figure is the top view of a triangle whose corners A, B and C are respectively $75 \mathrm{~mm}, 25 \mathrm{~mm}$ and 50 mm above the H.P. Determine the true shape of the triangle and the inclination of the side AB with the two planes.
4. Three points A, B and C are 7.5 m above the ground level, on the ground level and 9 m below the ground level respectively. They are connected by roads with each other and are seen at angles of depression of $10^{\circ}, 15^{\circ}$ and 30° respectively from a point O on a hill 30 m above the ground level. A is due north-east, B is due north and C is due south-east of O . Find the lengths of the connecting roads.
5. The guy ropes of two poles 12 m apart, are attached to a point 15 m above the ground on the corner of a building. The points of attachment on the poles are 7.5 m and 4.5 in above the ground and the ropes make 45° and 30° respectively with the ground. Draw the projections and find the distances of the poles from the building and the lengths of the guy ropes.
6. A room is $6 \mathrm{~m} \times 5 \mathrm{~m} \times 3.5 \mathrm{~m}$ high. An electric bracket light is above the centre of the longer wall and 1 m below the ceiling. The bulb is 0.3 m away from the wall. The switch for the light is on an adjacent wall, 1.5 m above the floor and 1 m away from the other longer wall. Find graphically the shortest distance between the bulb and the switch.
7. A room measures 8 m long, 5 m wide and 4 m high. An electric point hangs in the centre of the ceiling and 1 m below it. A thin straight wire connects the point to a switch kept in one of the corners of the room and 2 m above the floor. Draw the projections of the wire, and find the length of the wire and its slope-angle with the floor.
