CE6101 THEORY OF ELASTICITY AND PLASTICITY

Note: (a) Answer all questions (b) Suitably assume missing data after stating clearly (c) Read questions carefully

1. Write the equations of equilibrium and compatibility conditions for plane stress problems. If V is a potential function such that $b_{x}=-V, x$ and $b_{y}=-V, y$ and ∇^{2} is the Laplace operator in 2D show that

$$
\begin{equation*}
\nabla^{2} \nabla^{2} \phi=B \nabla^{2} V \tag{5}
\end{equation*}
$$

where B is a constant. Find B.
2. The stress field in a thin rectangular elastic plate bounded by $0 \leq x \leq l$ and $-a \leq y \leq a$ under plane stress conditions is given by: $\sigma_{x}=A x y, \sigma_{y}=0$, and $\tau_{x y}=B+C y^{2}$. Determine constants A, B and C so these traction boundary conditions are satisfied: (i) along the edges $y= \pm a, \tau_{x y}=0$, and (ii) at $x=0$, $\int_{-a}^{a} \tau_{x y}=Q$, where Q is a known quantity. Also identify the problem.
3. Determine the displacement field in a cantilever beam ($0 \leq x \leq l$ and $-a \leq y \leq a$) subjected to a downward load P at $x=0$ if the stress field is given by: $\sigma_{x}=P x y / I, \sigma_{y}=0$, and $\tau_{x y}=P\left(a^{2}-y^{2}\right) / 2 I$, where I is the second moment of area of cross-section. Use boundary conditions: $u=v=\partial v / \partial x=0$ at $x=l, y=0$.
4. Derive the first equation of equilibrium (along radial direction) for a 2D problem in polar coordinates.
5. The axisymmetric body force field in a solid circular disk of uniform thickness is given by $b_{r}=D r$ and $b_{\theta}=0$, where D is a known constant. Obtain the governing differential equation of the problem by combining equilibrium, stress-strain and strain-displacement relations. Describe how you will solve this equation. What are the boundary conditions if there is a central hole in the disk? The following equations may prove handy.

$$
\begin{gathered}
\frac{\partial \sigma_{r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\sigma_{r}-\sigma_{\theta}}{r}+b_{r}=0, \frac{\partial \tau_{r \theta}}{\partial r}+\frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta}+\frac{2 \tau_{r \theta}}{r}+b_{\theta}=0 ; \\
\varepsilon_{r}=\frac{\partial u}{\partial r}, \varepsilon_{\theta}=\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} \text { and } \gamma_{r \theta}=\frac{\partial v}{\partial r}+\frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} .
\end{gathered}
$$

