National Institute of Technology Calicut
Name:
Roll No:
Winter Semester 2022
End Semester Examination, 6 Jun 2022
CE6111D FINITE ELEMENT METHOD

Answer all questions; Provide neat sketches; Assume missing data; Read the questions carefully before answering

1. The finite element mesh of a plane frame shown in figure has 3degrees of freedom at each node. The node numbers are also shown. Number the elements and the active degrees of freedom. Calculate the semi-bandwidth. What will be the sizes of the reduced global stiffness matrix and global load vector?
2. Analyse the beam in figure given below using two beam elements and determine the slope and deflection at B if the right support C settles down by 10 mm without tilting. $E I=1.2 \times 10^{4} \mathrm{kN} \mathrm{m}^{2}$.

3. Write all 6 interpolation polynomials for a 6 -noded isoparametric quadratic triangle. Describe how you will get the Jacobian matrix by working out J_{12}. [6]
4. A 2 -noded bar element is connected to a 4 -noded quadrilateral element at nodes 5 and 6 as shown to make a composite element. The quadrilateral element is square with sides a. Node 5 is located as given and node 6 located at quarter point as shown. The stiffness matrix of the bar element operates on $\mathbf{u}^{\prime}=\left[u_{5}, v_{5}, u_{6}, v_{6}\right]^{T}$. Obtain the transformation matrix \mathbf{T} which relates \mathbf{u}^{\prime} to $\mathbf{u}=\left[u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4}\right]^{T}$ of the quadrilateral element. Briefly describe how you will obtain the 6×6 stiffness matrix of the bar with respect to \mathbf{u} ?
5. (a) If the strain transforms as $\left\{\varepsilon^{\prime}\right\}=\left[T_{\varepsilon}\right]\{\varepsilon\}$, derive the stress transformation rule?
 Also derive the transformation for constitutive matrix $[D]$.
(b) If the stress at a point in a plane stress problem is given by $\sigma_{x}=60 \mathrm{MPa}, \sigma_{y}=-30 \mathrm{MPa}$ and $\tau_{x y}=40$ MPa, use the above transformation and obtain the stress components with respect to $x^{\prime} y^{\prime}$ axes obtained by rotating the $x y$-system counter-clockwise by 30°. (Given: For $2 \mathrm{D},\{\varepsilon\}=\left[\begin{array}{lll}\varepsilon_{x} & \varepsilon_{y} & \gamma_{x y}\end{array}\right]^{T}$, and $\left[T_{\varepsilon}\right]$ rowwise is $\left[c^{2} s^{2} c s ; s^{2} c^{2}-c s ;-2 c s 2 c s c^{2}-s^{2}\right]$ respectively)
6. What is meant by static condensation? When do you use it? Explain the procedure mathematically using partitioned matrix equations. How is it implemented in computer?
7. Consider the following differential equation

$$
A E \frac{d^{2} u}{d x^{2}}+q(x)=0, \quad 0<x<l
$$

Write the weighted residual statement and obtain the weak form. Describe how the weak form is used to arrive at Galerkin's finite element equations.

$$
<><>000<><>
$$

