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Kinetics of Plane Motion of Rigid Bodies 

Introduction 

We saw earlier in kinematics that the motion of a rigid body can be considered as the superposition 

of a translational and rotational motion at any time instant. The axis of rotation then passes through 

this chosen reference point. A convenient point to choose is the centre of mass. 

For the translational motion, we may use the concepts of particle dynamics. Then, we have 

cM VF �= ,                                                               (4.1) 

where M is the total mass of the body and Vc is the velocity of the centre of mass. For the rotary 

motion, we have 

A A
=M H� .                                                              (4.2) 

The point A in the above can be the mass centre, a point fixed in an inertial reference, or a point 

accelerating toward or away from the mass centre. For these points, the angular velocity ωωωω is also 

involved. Moreover, the inertia tensor is involved. 

Moment of Momentum Equations—General Rigid Body Motion 

Consider a rigid body moving arbitrarily relative to an inertial reference XYZ as shown in Fig. 4.1. 

Choose any point A within the body or on a hypothetical massless rigid body extension of the 

body. Consider an infinitesimal element of mass dm at position ρρρρ in the body as shown in the 

figure. The velocity V′ of the elemental mass dm relative to A is simply the velocity of dm relative 

to any reference ξηζ which translates with A relative to XYZ. 

 

Figure 4.1 

The linear momentum of dm relative to A (i.e.V′dm) is the linear momentum of dm relative 

toξηζ translating with A. The moment of this momentum (i.e. the angular momentum) dHA about 

A can be obtained as 

dm
dt

d
dmd A

ξηζ









×=′×=

ρ
ρVρH . 

Now, since A is fixed in the body (or on a hypothetical extension of the body), and dm is a part of 

the body, the vector ρρρρ is fixed in the body. Hence 
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where ωωωω is the angular velocity of the body relative to ξηζ. But, as ξηζ translates with respect to 

XYZ, ωωωω is the angular velocity of the body with respect to XYZ as well. Hence 

( )dmd
A

ρωρH ××= . 

 
Figure 4.2 

Now, we ignoreξηζ and use xyz (fixed to the body at A) instead. Thus, let us now consider Fig. 

4.2. Integrating the above equation over the mass of the body yields 

( ) [ ]ωρωρH x

m

A Idm =××= ∫ ,                                               (4.3a) 

where [Ix] is the inertia tensor. The above in expanded form appears as 
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In the above, the 3×3 matrix represents the inertia tensor with two sets of components. The 

diagonal elements being the mass moments of inertia as given by 

( )∫ +=
M

xx dmzyI
22 , ( )∫ +=

M

yy dmzxI
22  and ( )∫ +=

M

zz dmyxI
22 ,                  (4.4a) 

and the off-diagonal elements corresponding to the mass products of inertia given by 

∫=
M

xy dmxyI , ∫=
M

yz dmyzI  and ∫=
M

xz dmxzI .                                 (4.4b) 

In the case of general motion of the rigid body, the above turns out to be: HA = [Ix] ωωωω, where [Ix] 

is the mass-inertia tensor. 

Now, we need to employ the moment of momentum equation, viz. Eq. (4.2). Recall that the 

point A can be,  

1) the moving centre of mass of the body, 

2) a ‘fixed’ point or a point which is moving with a constant velocity at “ t ” in XYZ, or 

3) a point that is accelerating toward or away from the mass centre at t. 

Now, we can write 

A
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,                                             (4.5) 

where ωωωω is the angular velocity of xyz (and thus of the body) relative to XYZ. Hence, we have 

A

xyz
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= ,                                               (4.6a) 
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or 

( )ωωωM ][][ xxA II ×+= � .                                               (4.6b) 

Plane Motion of Rigid Bodies 

In the case of planar motion, we have ωωωω = ω k, where k is the unit vector along x-axis. As a result, 

Eq. (4.3) yields 
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Similarly, Eq. (4.6) for this case leads to 

( )ωωωM ][][ xxA II ×+= �
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which can be written as 
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Note: 

• The angular velocity vector ωωωω is always taken relative to the inertial reference XYZ. 

• On the other hand, the moment of forces (i.e. MA), is taken about xyz fixed to the body at A. 

• For all plane motions, the last equation of (4.8), viz. ( ) ω�
ZZZA

IM = , is always the same; the 

other two may get modified. 

Pure Rotation of a Body of Revolution about its Axis of Revolution 

Consider a uniform body of revolution as shown in Fig. 4.3. If it undergoes pure rotation about the 

axis of revolution fixed in an inertial space XYZ, we have plane motion parallel to any plane normal 

to the axis of revolution. The xyz-system is fixed such that z-axis is collinear with the axis of 

revolution. The xyz axes can have any arbitrary orientation with respect to XYZ; however, let us 

choose them to be collinear with XYZ at t. 

 
Figure 4.3 

As the body is a solid of revolution, we have Ixy = Iyz = Ixz = 0. Hence, the xyz-axes are the 

principal axes. As a result, from Eq. (4.8), we have 

ZZZZ
IM ω�=  and Mx = My = 0.                                                (4.9) 

As centre of mass is on the axis of revolution, it is stationary. Hence we have 
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∑ = 0xF , ∑ = 0yF  and ∑ = 0zF .                                        (4.10) 

From Eq. (4.9), we have 

θ��
ZZZ

IM = ,                                                         (4.11) 

which is similar to the Newton’s law statement xm ��=F . 

Ex: 4.1 A stepped cylinder as shown in Fig. 4.4 has the dimensions R1 = 0.3 m, R2 = 0.65 m, and 

the radius of gyration, k = 0.35 m. The mass of the stepped cylinder is 100 kg. Blocks A and B are 

connected to the cylinder. If block B is of mass 80 kg and block A is of mass 50 kg, how far does A 

move in 5 sec? In which direction does it move? 

 

Figure 4.4 

Letθ�� be the angular acceleration of the cylinder in the counter-clockwise direction as shown in the 

free body diagrams given in Fig. 4.5. The D’Alembert’s fictitious inertia forces are also shown in 

all the three free body diagrams. 

 
Figure 4.5 

From free body diagram (1), we have 

TB = WB + mB R1θ�� ; 

from the free body diagram (3), we obtain 

TA = WA − mA R2θ�� ; 

and from free body diagram (2), we get 

TA R2 − TB RI = Iθ�� . 

Using the first two equations in the third yields 

mA (g − R2θ�� ) R2 − mB (g + R1θ�� ) R1 = Iθ�� . 

Therefore, we get 

{ } .
12

2

1

2

2
gRmgRmRmRmI

BABA
−=++θ��  

Substituting the values, we obtain 

{ } 3.081.98065.081.9503.08065.05035.0100 222 ××−××=×+×+×θ�� , 
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which leads to the solution, θ��  = 2.0551 rad/s. Thus, the assumed direction of rotation is correct, 

and therefore body A descends. 

Now, 2

2 m/s336.1== θ��RaA . From this, we can get the velocity as AtVA += 336.1 . As VA(t = 0) 

= 0, A = 0. Integrating once again, we get the position as yA = 1.336t
2
/2 + B, where B = 0. 

Therefore, yA (t = 1.5 s) = 16.6975 m. 

Pure Rotation of a Body with Two Orthogonal Planes of Symmetry 

Consider a uniform body with two orthogonal planes of symmetry as depicted in Fig. 4.6. 

 

Figure 4.6 

Consider its pure rotation about an axis that is stationary and collinear with the intersection of 

the planes of symmetry. Let us denote it by the z-axis. The origin A can be fixed anywhere on the 

z-axis; x and y-axes are chosen in the plane of symmetry. The XYZ-axes are chosen collinear with 

xyz at time t. The equations of motion work out to be identical to the previous case. 

Pure Rotation of Slab-Like Bodies 

Consider a slab-like body having a single plane of symmetry as shown in Fig. 4.7. The plane of 

symmetry is along the xy-plane. Consider pure rotation of the body about an axis normal to the xy-

plane. As the z-axis is normal to the xy-plane which is a plane of symmetry, we have Ixz = Iyz 0. 

 
Figure 4.7 

Thus, the moment of momentum equations are  

Mx = 0, My = 0 and Mz= Izz .θω ���
zzz

I=                                         (4.12) 

If the centre of mass is not along the axis of rotation, we do not have equilibrium for the centre 

of mass; it undergoes circular motion. We need to use Newton’s laws and kinematics relations to 
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solve this problem. If the axes xyz are the principal axes for the body, we again obtain the same set 

of equations as before provided z-axis is the axis of rotation. 

Ex: 4.2 A plate weighing 3 lb/ft
2
 is supported at A and B as shown in Fig. 4.8a. What are the force 

components at B at the instant support A is removed? 

Consider the free body diagram shown in Fig. 4.8b. We have, tan θ = 0.8, and  

( ) ( )2222
33

810
3

3108

333
+

××
=+=








+=

g
bd

bdtdbbd
tI zz

ρ
ρ  = 407.453. 

Now, ∑ = 0zM : 

48034 ××=×= WI zzθ
�� . Therefore, 2rad/s3561.2=θ�� . 

Let the centre of mass have the accelerations X��  and Y�� . Thence, we have 

222 ft/s0864.1540312.654 ==+=+= θθ �������� jia YX . 

 

Figure 4.8 

Therefore, m/s 7805.11cos == θaX��  and m/s 4244.9sin == θaY�� . 

Now considering the second free body diagram shown as Fig. 4.8c, we obtain 

xmBF xx
��==∑ :0 = 37.805 lb. 

and 

ymWBF yy
��−==∑ :0 = 169.756 lb. 

Rolling Slab-like Bodies 

Consider rolling without slipping of slab-like bodies such as cylinders, spheres or plane gears. The 

point of contact has an instantaneous zero velocity; there is a pure rotation about this point of 

contact. The body moves as if there is a hinge at the point of contact. For rolling without slipping, 

the acceleration of contact point is towards the geometric centre.  

Thus, the equation 
AA

HM �=  is valid in cases like the ones shown in Fig. 4.9a as A accelerates 

towards the centre of mass. 
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Figure 4.9 

However, it is not valid for the case shown in Fig. 4.9b as A is not accelerating (we know that A 

is accelerating, at the instance vertical upward) toward mass centre (which is different from the 

geometric centre of the outer circle). Here we can use M = Iα about the centre of mass. 

General Plane Motion of a Slab-like Body 

Consider the general plane motion of slab-like bodies. The motion is parallel to the plane of 

symmetry. The angular velocity ωωωω will be normal to the plane of symmetry and as per Chasles` 

theorem, can be taken to pass through the centre of mass. The transactional velocity Vc will be 

parallel to the plane of symmetry. Take XYZ as the inertial frame of reference and take xyz fixed at 

centre of mass such that xy-plane coincides with the plane of symmetry. 

 
Figure 4.10 

The moment of momentum equations are  

Mx = 0, My = 0 and Mz = Izz ω� . 

Consider the centre of mass. For equilibrium in the z-direction, we have  

∑ = .0zF  

Newton's law holds in the x- and y-directions. 

Ex: 4.3 Find the acceleration of block B shown in Fig. 4.11. The system is in a vertical plane and is 

released from rest. The cylinders roll without slipping along the vertical walls and along body B. 

Neglect friction along the guide rod. A torque of MA = 150 Nm is applied to cylinder A. Other data 

are: WA = 100 N, WB = 300 N, Wc = 50 N, MA = 150 Nm. 
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Figure 4.11 

Consider the free body diagrams shown in Fig. 4.12. From the first free body diagram, the moment 

of momentum about a:(note that a accelerates towards the centre of mass) 

( ) ( ) ( ) ( ) A
gg

f θ��







+=−−−

22

1 15.0
100

15.0
100

2

1
15015.01003.0 , 

which on simplification yields Af θ��344.01653.0 1 =−− . 

Considering the third free body diagram given by Fig. 4.12c, and writing the moment of 

momentum equation about b, we have 

( ) ( ) ( ) ( ) C
gg

f θ��







+=+

22

2 1.
50

1.
50

2

1
1.0502.0 , 

which leads to Cf θ��07645.050.2 2 =+ . 

 

Figure 4.12 

Writing the equation of motion along y-direction of the free body diagram given in Fig. 4.12b, 

we obtain 

By
g

ff ��
300

300 21 =++− . 

From the kinematics of motion, we have 

BA y���� =θ3.0  and Bc y���� −=θ2.0 . 

Solving the above equations simultaneously, we obtain 
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N.07.21  and  N9.457  andm/s 1.24
21

2
=−=−= ffy

B
��  

Pure Rotation of an Arbitrary Rigid Body 

Consider a body having an arbitrary distribution of mass rotating about an axis of rotation fixed in 

inertial space. We consider this axis as the inertial Z-axis, and the z-axis fixed on the body. The 

origin of xyz can be anywhere along this axis of rotation. The moment of momentum equations will 

be the general equations given by Eq. (4.8), since Izx and Iyz will, in general, not be equal to zero. If 

the centre of mass is along the z-axis, then it has no acceleration. Thus, we can apply the rules of 

statics to the centre of mass. For other cases, we need to employ Newton’s law. 

 

Figure 4.13 

From the definition of centre of mass of a system of rigid bodies as shown in Fig. 4.13, we have 

∑
=

=
n

i

iic mM
1

rr , 

where mi is the mass of the i
th

 rigid body, ri is the position vector to the centre of mass of i
th

 rigid 

body, M is the total mass of the system of rigid bodies, and rc is the position vector of centre of 

mass of the system of rigid bodies. Differentiating this equation, we obtain 

∑=
i

iic mM rr ��  and ∑=
i

iic mM rr ���� . 

Euler’s Equations 

For the general motion of rigid bodies, the Euler’s equations are obtained by orienting the xyz axes 

along the principal inertia directions. Thus, the inertia tensor boils down to a diagonal matrix. Eq. 

(4.6) for this case reduces to 

Mx = Ixx x
ω� + ωy ωz (Izz− Iyy), 

My = Iyy y
ω� + ωz ωx (Ixx− Izz)  

and 

Mz = Izz z
ω� + ωx ωy (Iyy− Ixx). 

These equations are nonlinear. However, if the motion of the body is known, we can easily 

compute the moments about point A (refer to the first few sections of this module). 

Ex: 4.4 A thin disc of radius 1 m and weight 1.5 kN rotates at an angular speed ω2 of 100 rad/s 

relative to a platform as shown in Fig. 4.14. The platform rotates with an angular speed ω1 of 20 

rad/s relative to ground. Calculate the reaction at the bearings A and B. Neglect the weight of the 

shaft. Assume that bearing A restrains the system in the radial direction. 

Fix xyz to the centre of mass of the disc as shown. XYZ is fixed to ground. 

Z 

rc rn 

mn c.m 
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r1 r2 

Y 
m1 m2 



 10

              

 

y 

z 

x 

ω1 

1 m ω2 

X 

Z 

Y 

1 m 

1 m 

A B 

 
Figure 4.14 

Angular velocity of disc with respect to XYZ is ωωωω = ωωωω1 + ωωωω2 = 20 k + 100 j rad/s. 

The xyz components of ωωωω are: ωx = 0, ωy = 100 rad/s, ωz = 20 rad/s. 

Next, the angular accelerations are 

2

2121 rad/s200010020 ijkωω0ωωω −=×=×+=+= ��� . 

Ixx= Izz=
2

22

kg/m226.38
16

2

81.9

1500

16
=×=

dM
. Iyy= Ixx+Izz = 76.452 kg/m

2
. 

Therefore from Euler’s equations 

Mx = 38.226×(−2000) + 20×100×(−38.226) = −152905.2 Nm;  

and 

My = 0 + 0 = 0 and Mz = 0 + 0 = 0. 

 

Figure 4.15 

Now, consider the 

free body diagram of 

the shaft and disc 

shown in Fig. 4.15. 

The moments Mx, My 

and Mz are generated by the bearing forces. Hence, we can write 

Mx = −152905.2 = 1×Bz −1× Az, 

My = 0,  

and 

Mz = 0 = −1×Bx+ 1× Ax. 

From other equilibrium equations, we have 

Az + Bz= 1500 N, 

Ax+ Bx= 0 

and  

Ay= − (1500/9.81)×2×(20)
2
 = −122,324.16 N. 

And the remaining reactions work out as 

Ax = Bx= 0, Bz=− 75,702.6 N, Az = 77,202.6 N. 
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