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ZZU102 ENGINEERING MECHANICS II—DYNAMICS 
 

M O D U L E   3 

 

Kinematics of Rigid Bodies—Relative Motion 

We saw earlier the case of simple relative motion involving two references translating with respect 

to each other. There are many instances where the use of multiple references becomes inevitable. 

Recall that the Newton’s laws are valid for an inertial reference only. 

Translation and Rotation of Rigid Bodies 

A rigid body is a continuum composed of particles having fixed distances between one another. 

There are two types of motion of a rigid body—translation and rotation. 

TRANSLATION: 

If a body moves in such a way that all the particles constituting it have at time t, the same velocity 

V(t) relative to some reference, then the body is said to be in translation relative to this reference at 

this time. Translation does not necessarily mean motion along a straight line. A characteristic of 

translation is that a straight line such as ab drawn on the body retains an orientation parallel to its 

original direction throughout the motion of the body as shown in Fig. 3.1. 

 
Figure 3.1 

ROTATION: 

If a rigid body moves such that along some straight line all the particles of the body, or a 

hypothetical extension of the body, have zero velocity relative to some reference, the body is said 

to be in rotation relative to this reference. This line of stationary particles is the axis of rotation. 

MEASUREMENT OF ROTATION: 
A single revolution is the amount of rotation in either a clockwise or a counter-clockwise sense 

about the axis of rotation that brings the body back to its original position. Partial revolutions are 

measured by observing any line segment such as AB, from a view point along the axis of rotation 

as depicted in Fig. 3.2. The angle β is the measure of the partial rotation. 

 
Figure 3.2 
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The reader may recall that finite rotations are not vectors (as their superposition is not 

commutative). However, infinitesimal rotations are vectors. Consequently, the angular velocity ωωωω 

having a magnitude dβ/dt with an orientation parallel to the axis of rotation (and sense according to 

the right hand screw rule) is a vector. Note also that the line of action is not prescribed by this 

definition (as the line of action can be considered at positions other than the axis of rotation as 

well). 

Chasles` Theorem 

The motion of any rigid body can be thought of as the superposition of a translational motion and a 

rotational motion. 

 
Figure 3.3 

Consider the planar motion of a body as depicted in Fig. 3.3. Choose any point such as B which 

translates by ∆∆∆∆RB so that B reaches its final position B′. Now, apply a rotation about an axis 

through B (normal to the plane) by ∆φ. If we had chosen a different point, say C, the displacement 

vector ∆∆∆∆RC will differ from ∆∆∆∆RB. However, the amount of rotation ∆φ (about the axis through C) 

will be the same. 

The translational velocity of the chosen point B at time t is d RB/dt = VB. The instantaneous angular 

velocity ωωωω is the same for any chosen point such as B. This holds good for any general motion of 

the body as well. This is known as the Chasles’ theorem and can be described as follows. 

CHASLES` THEOREM: 

1. Select any point B in the body. Assume that all the particles of the body have the same velocity 

VB at the time instant t, where VB as the actual velocity of the point B. 

2. Superpose a pure rotational velocity ωωωω about an axis of rotation going through point B. 

With VB and ωωωω, the actual instantaneous motion of he body is completely determined; ωωωω, will be 

the same for all the chosen points and only VB will differ. 

NOTE: The actual instantaneous axis of rotation at time t is the one going through those points of 

the body having zero velocity at time t. 

Derivative of a Vector Fixed in a Moving Reference 

Consider two references XYZ and xyz. We observe the moving frame of reference xyz from the 

inertial frame XYZ. As a reference is a rigid system, we apply Chasles` theorem to reference xyz. 

Thus, to fully describe the motion of xyz relative to XYZ, we chose the origin O, and we superpose 

a translation velocity R� , equal to velocity of O onto a rotational velocity ωωωω, with the axis of 

rotation passing through the point O. This is depicted in Fig. 3.4. 

 Figure 3.4 
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Now, suppose we have a vector A of fixed length, and fixed orientation as seen from xyz. Such a 

vector is said to be fixed in reference xyz. Then, we can write 

.0=








xyzdt

dA
 

However, 

XYZdt

d







 A
 

may not be zero. To evaluate this, let us use Chasles` theorem as follows. 

1. Consider the translational motion of xyz as given by R� . This does not alter the direction of A as 

seen from XYZ. Moreover the magnitude of A is fixed, (although the line of action of A may 

change). As a result, the vector A does not change during this motion. 

2. Next, consider a pure rotation about a stationary axis collinear with ωωωω and passing through O. 

In order to observe this rotation, let us employ at O a stationary reference X′Y′Z′ positioned in such 

a way that Z′-axis coincides with the axis of rotation. See Fig. 3.5 below. 

  
Figure 3.5 

Now, the vector A is rotating about the Z′-axis at the instant t. We can write A as  

ZZrr AAA ′′++= εεεA θθ . 

As A rotates about the Z′-axis, its components Ar, Aθ and AZ′  do not change with time. Hence, we 

have 

ZYXZYX

r
r

ZYX dt

d
A

dt

d
A

dt
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′′′′′′′′′









+








=







 θ
θ

εεA
. 

We have seen earlier that 

θθ ωθ εε
ε

== �
dt

d r  and rr
dt

d
εε

ε
ωθθ −=−= � . 

Thus, we obtain 

rr

ZYX

AA
dt

d
εε

A
ωω θθ −=









′′′

, 

which can be shown to be equal to ωωωω××××A as 
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Aω
A

×=








′′′ ZYXdt

d
. 

Since X′Y′Z′ is stationary relative to XYZ , we would observe the same time derivative from the 

latter reference as from the former one. That is  

XYZZYX dt

d

dt

d








=









′′′

. 

Thus, we conclude that  

Aω
A

×=








XYZdt

d
. 

The above equation provides the time rate of change of A fixed in a moving reference xyz moving 

arbitrarily relative to XYZ. We see from the above that this time rate of change of A remains 

unchanged when 

1. A is fixed in some other location (as long as its magnitude and direction are the same), and  

2. The actual axis of rotation is shifted to a new parallel position. 

Differentiating the above once again, we get 

( )AωωAω
A

ωA
ωA

××+×=







×+×








=








�

XYZXYZXYZ
dt

d

dt

d

dt

d
2

2

, 

where .
XYZdt

d








=

ω
ω�  

NOTE: 

1. The term “fixed in reference xyz” can be replaced by “fixed in a rigid body”. Then ωωωω is the 

angular velocity of the rigid body. 

2. Let the angular velocity of a body A relative to another body B be ωωωω1 and the angular velocity 

of B relative to the ground be ωωωω2. Then, what is the total angular velocity ωωωωT of A relative to 

ground? Here ωωωω1 (the angular velocity of A relative to B) is actually the difference between the 

total angular velocity of A with respect to ground and the angular velocity ωωωω2 of B with respect 

to ground. i.e. ωωωω1= ωωωωT − ωωωω2. Therefore, ωωωωT = ωωωω1 + ωωωω2. 

Ex: 3.1 A disk C is mounted on a shaft AB as shown in Fig. 3.6. The shaft and the disk rotate at a 

constant angular velocity ω2 of 10 rad/s, relative to the platform to which the bearings A and B are 

attached. The platform rotates at a constant angular speed ω1 of 5 rad/s relative to the ground in a 

direction parallel to the Z-axis of the ground reference XYZ. Find the angular velocity ωωωω of the disk 

relative to XYZ. Find (dωωωω/dt)XYZ and (d 
2ωωωω/dt 

2
)XYZ. 

 
Figure 3.6 
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The angular velocity ωωωω of the disk relative to the ground is, ωωωω = ωωωω1 + ωωωω2. At the instance shown, ωωωω 
= 5 k + 10 j rad/s. Using a dot to represent time derivative with respect to XYZ, we have 

21
ωωω ��� += . 

Consider the vector ωωωω2. It is always collinear with AB. Moreover, ωωωω2 is a constant. Thus, ωωωω2 is fixed 

to the platform along AB. Since, the platform has an angular velocity of 1ω�  relative to XYZ, we 

have 

212 ωωω ×=� . 

Now, 0ω =1
�  as 1ω�   as seen from XYZ is a constant vector. Hence, we have 

2

21 rad/s 50105 ijkωωω −=×=×=� . 

Taking derivative of the above once again, we get  

( ) ( ) 2

2112121 rad/s2501055 jjkkωωω0ωωωωω −=××=××+=×+×= ���� . 

Ex: 3.2 Consider a position vector ρρρρ between two points on the rotating disk of last example as 

shown in Fig. 3.7. The length of ρρρρ is 100mm and, at the instant of interest, is in the vertical 

direction. What are the first and second derivatives of ρρρρ at this instant as seen from the ground 

reference? 

 

Figure 3.7 

As the vector ρρρρ is fixed to the disk which has, at all times, an angular velocity relative to XYZ equal 

to ωωωω1 + ωωωω2, we have 

mm/s 1000100)105()( 21 ikjkρωωρ =×+=×+=� . 

Differentiating the above once again, we get 

( ) ( ) ρωωρωωρρ ������ ×++×+=







= 2121

XYZdt

d
. 

Now, 01 =ω�  as seen earlier. Moreover, 
212 ωωω ×=� . Therefore, we have 

                               ( ) ( ) ρωωρωωρ ��� ××+××= 2121 ( ) ijkki 100010510050 ×++×−=  

                                  m/s1010mm/s1000050005000 kjkjj −=−+= . 

Ex: 3.3 Consider the same example as before shown in Fig. 3.8. For the disk, 

rad/s2 and rad/s6 22 == ωω � , both relative to platform at the instant of interest. At this instant, 
2

11 rad/s 3 and  rad/s 2 −== ωω �  for the platform relative to ground. Find the angular acceleration 

vectorω� for the disk relative to the ground at the instant of interest, where ωωωω is the angular velocity 

of the disk relative to ground at all times. 

ρρρρ 
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Figure 3.8 

We have 
21

ωωω += . Therefore, 
21

ωωω ��� += . As ωωωω1 is vertical at all times, we have 

kω
ω

ω 1
1

1
�� =








=

XYZdt

d
= −3 k rad/s

2
. 

On the other hand, ωωωω2 is changing direction and magnitude. Hence, ωωωω2 is not fixed in a reference or 

a rigid body. So, let us fix a unit vector e onto the platform as depicted in Fig. 3.8 to be collinear 

with the centre line of the shaft AB. The angular velocity of e is ωωωω1 at all times. Hence, ωωωω2 = ω2 e at 

all times. Therefore, 

)( 122222 eωeeeω ×+=+= ωωωω ���� , 

and 

)( 1221 eωekω ×++= ωωω ��� . 

This expression is valid at all times and we can differentiate it again. At the instant of interest, e 

= j. Thus, we obtain 

( ) .rad/s 32122623
2

kjijkjkω −+−=×++−=�  

Applications of the Fixed-Vector Concept 

We saw that 

Aω
A

A ×=







≡

XYZdt

d
� , 

where ωωωω is the angular velocity of the body relative to XYZ. We shall use this formula for a vector 

ρρρρab as shown in Fig. 3.9 which connects two points a and b in a rigid body under consideration. 

The vector ρρρρab is fixed in the rigid body. As per Chasles’ theorem, the body has a translational 

velocity R� relative to XYZ corresponding to some point O in the body plus an angular velocity ωωωω 
relative to XYZ with the axis of rotation through O. 

 
Figure 3.9 
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Now, 
abab

rrρ −= . Hence, we have 

ab

XYZ

a

XYZ

b

XYZ

ab

dt

d

dt

d

dt

d
VV

rrρ
−=








−








=








, 

where Va and Vb are the velocities of the points a and b as shown in Fig. 3.9. Moreover, Vb − Va is 

the difference between the velocity of points b and a. Thus, we can write 

abab ρωVV ×+= . 

Note the order of a and b in ρρρρab above and remember that ρρρρba = −ρρρρab. Thus, the velocity of a 

particle b of a rigid body as seen from XYZ equals the velocity of any other particle a of the body 

as seen from XYZ plus the velocity of particle b relative to a (= ωωωω ×××× ρρρρab). 

Differentiating the above equation once again, we get a relation connecting the acceleration vectors 

of two points of a rigid body as 

( )abab

XYZ

ab
dt

d
ρωωρ

ω
aa ××+×








+= , 

which can be rewritten as 

( )ababab ρωωρωaa ××+×+= � . 

 
Figure 3.10 

Consider a circular cylinder rolling without slipping as shown in Fig. 3.10. The point of contact A 

of the cylinder with the ground has zero velocity at the instant. Hence we have pure instantaneous 

rotation at any time t about an axis of rotation at the line of contact. The velocity of a point such as 

B shown in the figure can be obtained as 

ABABABAB V ρωρω0ρωV ×=×+=×+= . 

Thus, for computing the velocity of any point on the cylinder, we can imagine the cylinder as 

hinged at the point of contact A. For the point O, the centre, we get  

ijkV RR ωω −=×=0 , 

where i, j, k are the unit vectors along the coordinate directions X, Y and Z respectively. If V0 is 

known, we then have 

.0

R

V
−=ω  

Differentiating V0 once we obtain 

iia αω RR −=−= �
0 . 

The acceleration vector of the point of contact A can be calculated from 

( )OAOAOA ρωωρωaa ××+×+= � ( ) ( )jkkjki RRR −××+−×+−= ωωωα � j2ωR= . 
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Thus, the point A is accelerating upward, toward the centre of the cylinder. 

Ex: 3.4 Find the angular velocities and angular accelerations of the two bars shown in Fig. 3.11. 

The cylinder is rotating at a constant angular speed of 2 rad/s. Also locate the instantaneous axis of 

rotation of road AB. 

 
Figure 3.11 

ANGULAR VELOCITIES: 

Consider the cylinder first. Since VO = 0, we have 

m/s 6.0)3.0(2 ijk0ρωVV =−×+=×+= OAOA
. 

Now, let us consider the bar BC. We have 

jik0ρωVV BCBCCBBCCB ωω 3.0)3.0( −=−×+=×+=  

Considering bar AB next, we have 

)3.01(6.0 jikiρωVV +×+=×+= ABABABAB ω  

                                               = 0.6 i + ωAB j − 0.3 ωAB i. 

Equating VB from the above two, we obtain ωAB = 2 rad/s and ωBC = −6.667 rad/s. Thus ωAB is 

counter-clockwise and ωBC is clockwise. 

ANGULAR ACCELERATIONS: 

The acceleration of a point on a rigid body can be written as 

( )ababab ρωωρωaa ××+×+= � . 

The acceleration of point A can be obtained by considering the cylinder. Thus 

( ) ( ) 2m/s 2.13.022 jjkk00ρωωρωaa =−××++=××+×+= OAOAOA
� . 

Similarly, considering the link BC, we get the acceleration of point B as follows: 

( ) ( ) ( ){ }ikkik0ρωωρωaa 3.03.0 −××+−×+=××+×+= BCBCBCCBBCBCCBBCCB ωωω��  

              
2m/s3.033.13 ji BCω�−=  

We can get the acceleration of point B from consideration of bar AB as well. Thus, we obtain 

( ) { })3.01(22)3.01(2.1 jikkjikjρωωρωaa +××++×+=××+×+= ABABABABABABAB ω��  

             iij 4−−= ABAB ωω ��  

Equating the above two, we get the angular accelerations as ABω� = −57.8 rad/s
2
 and BCω� = 192.6 

rad/s
2
. 

LOCATION OF INSTANTANEOUS AXIS OF ROTATION: 

Consider Fig. 3.12. Let D (x, y) be the instantaneous axis of rotation. Then VD must be equal to 

zero. 
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Figure 3.12 

That is 

( ) 0ijijikiρωVV =−+=+×+=×+= yxyxADABAD 226.026.0 , 

from which we get x = 0 and y = 0.3 m. In other words, the point O of Fig. 3.11 happens to be the 

axis of rotation of bar AB at the instant of interest. 

General Relationship between Time Derivatives of a Vector for Different References 

We saw that for a vector A fixed in a moving reference xyz, 

0
A

=








xyzdt

d
 and Aω

A
×=









XYZdt

d
. 

Let us extend the above to a vector A which is not necessarily fixed in reference xyz. 

  
Figure 3.13 

Consider particle P with position vector ρρρρ with respect to xyz as shown in Fig. 3.13. Assume that 

the coordinates xyz moves arbitrarily relative to XYZ, with a translational velocity R� and a 

rotational velocity ωωωω in accordance with Chasles` theorem. 

Let kjiρ zyx ++=  relative to xyz. Therefore we have 

kji
ρ

zyx
dt

d

xyz

��� ++=







. 

As zyx ��� ,,  are time derivatives of scalars and so no reference need be specified for the time 

derivative. Now 

( ) ( )kjikji
ρ

������ zyxzyx
dt

d

XYZ

+++++=







. 

As i, j, k are unit vectors fixed in reference xyz, we have 

( ) ( ) ( ) .ρωkωjωiωkji ×=×+×+×=++ zyxzyx ���  

Hence,  

.Aω
ρρ

×+







=









xyzXYZ dt

d

dt

d
 

Here, ωωωω is the angular velocity of xyz relative to XZY. 
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RELATIONSHIP BETWEEN VELOCITIES OF A PARTICLE FOR DIFFERENT REFERENCES 

The velocity of a particle relative to a reference is the derivative as seen from this reference of the 

position vector of the particle in the reference. Thus 

XYZ

XYZ
dt

d








=

r
V  and 

xyz

xyz
dt

d








=

ρ
V . 

Now, r = R + ρρρρ. Taking time derivatives, we get 

XYZXYZ

XYZ

XYZ dt

d

dt

d

dt

d








+








==







 ρR
V

r
. 

Let 
XYZdt

d








≡

R
R�  be the velocity of origin of xyz relative to XYZ. Therefore,  

ρωR
ρ

V ×++







= �

xyz

XYZ
dt

d
 or ρωRVV ×++= �

xyzXYZ . 

The above relates the velocities of the same particles from the same references. This multi 

reference approach has great particle significance. We shall use a dot over a vector to indicate 

derivative relative to XYZ. 

Acceleration of a Particle for Different References 

From first principles, we can write 

xyzxyz

xyzxyz
dt

d

dt

d








=








=

2

2r
Va  

and 

XYZXYZ

XYZXYZ
dt

d

dt

d








=








=

2

2r
Va . 

Differentiating the velocity equation that we derived in the last section with respect to time relative 

to XYZ we obtain 

( ) .ρ
ωρ

ωRVρωRVa ×







+








×++








=





×++








=

XYZXYZXYZ
xyz

XYZXYZ
xyzXYZ dt

d

dt

d

dt

d

dt

d

dt

d
����  

However, 

xyz

xyz

xyz

XYZ

xyz
dt

d

dt

d
VωVV ×+








=








 and ρω

ρρ
×+








=









xyzXYZ dt

d

dt

d
. 

Hence, 

( ) ρ
ω

ρωω
ρ

ωRVωaa ×







+××+








×++×+=

XYZxyz

xyzxyzXYZ
dt

d

dt

d
�� . 

That is 

( )ρωωρωVωRaa ××+×+×++= ���
xyzxyzXYZ 2 , 
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where ω  and ω�  are the angular velocity and angular acceleration of reference xyz relative to XYZ 

respectively. The term 2 ωωωω××××Vxyz is known as the Coriolis acceleration vector. 

Ex: 3.5 An airplane moving at 70 m/s is undergoing a roll at 2 rad/min. When the plane is 

horizontal, an antenna is moving at a speed of 2.5 m/s relative to the plane, and is at a position of 

3 m from the centre line of the plane. If the axis of roll is along the centreline, what is the velocity 

of antenna end relative to ground when the plane is horizontal? 

Fix xyz to the airplane and XYZ to the ground. 

A. MOTION OF PARTICLE RELATIVE TO XYZ: 

The position vector of antenna tip relative to xyz is m 3 jρ =  and its velocity, again relative to xyz 

is m/s 2.5 jV =xyz . 

 
Figure 3.14 

B. MOTION OF XYZ RELATIVE TO XYZ: 

The translational velocity of xyz relative to XYZ is m/s 70iR =�  and its angular velocity is 

rad/s 
60

2
iω −= . 

Therefore, the velocity of the antenna tip relative to XYZ works out as 

m/s 1.05.2703
30

1
705.2 kjijiijρωRVV −+=×








−++=×++= �

xyzXYZ
. 

Ex: 3.6 A particle rotates at a constant angular speed of 10 rad/s on a platform, while the platform 

rotates with a constant angular speed of 50 rad/s about axis AA. What is the velocity of the particle 

P at the instant the platform is in the XY plane and the radius vector to the particle forms an angle 

of 30
o
 with the Y-axis as shown in Fig. 3.15? 

 
Figure 3.15 

Fix xyz to the platform. 

A. MOTION OF PARTICLE RELATIVE TO XYZ: 

The position vector of particle P relative to xyz is ft )30sin   2(cos30 ijρ +=  and its velocity, again 

relative to xyz is ft/s103205.17)30sin30cos2(101 jiijkρωV −−=+×=×=xyz . 

y 

Y 

Z 

X 

z 

3 m 

x 

 2 rad/min 

Z 

X 

ω1 = 10 rad/s 

Y 

ω2 = 50 rad/s P 

30o 
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B. MOTION OF XYZ RELATIVE TO XYZ: 

The translational velocity of xyz relative to XYZ is 0R =�  and its angular velocity is 

rad/s 50 jω −= . 

Therefore, the velocity of P relative to XYZ can be obtained as 

)30sin30cos2()50(103205.17 ijjjiρωRVV +×−+−−=×++= �
xyzXYZ . 

                             ft/s 50103205.17 kji −−−= . 

Ex: 3.7 A stationary truck as shown in Fig. 3.16 is carrying a cockpit for a worker who repairs 

overhead fixtures. At the instant shown the base D is rotating at ωωωω2 = 0.1 rad/s, and 2ω�  =0.2 rad/s
2
 

relative to the truck. Arm AB is rotating at angular speed of ωωωω1 = 0.2 rad/s and 1ω�  = 0.8 rad/s
2
 

relative to DA. Cockpit C is rotating relative to AB so as to keep the mass always upright. What are 

the velocity and acceleration vectors of the man relative to the ground if α = 45
o
 and β = 30 at the 

instant of interest? DA=13 m. 

 
Figure 3.16 

The cockpit C and the poin`t B have the same motion (as cockpit has the same orientation). So we 

will concentrate on B instead of C. Let us fix xyz to the arm DA and XYZ to the truck. 

A. MOTION OF B RELATIVE TO XYZ: 

The position vector of B relative to xyz is given by 

m5.160.2sin3cos3 jijiρ −=−= ββ  

As ρρρρ is fixed in AB which rotates at ωωωω1 = 0.2 k, m/s 3.0520.0 +=×= jρωVxyz . 

xyzxyz

xyz
dt

d

dt

d








×+×








=

ρ
ωρ

ω
a 1

1  

       ( ) ( ) 2m/s14.209.13.0520.02.05.160.28.0 jiijkjik +=+×+−×= . 

B. MOTION OF XYZ RELATIVE TO XYZ: 

The position vector of the origin of xyz relative to XYZ is  

jijiR 1923.91923.9
2

1

2

1
13 +=








+=  

As R is fixed in DA, and as DA rotates with ωωωω2 with respect to XYZ, we have 

m/s919.01.02 kRjRωR −=×=×=� . 

( ) ( )kjjijRωRωR 919.01.01923.91923.92.022 −×++×=×+×= ����  2m/s0919.0838.1 ik −−= . 

 Z 

 Y 
 z 

 x 

 B 
 C 

 AB=3m 

 y 

 α 

 X 
 D 

 ωωωω2, ωωωω2 

 

. 

 ωωωω1, ωωωω1 

. 

 A 
 β 
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Now, as 

rad/s1.02 jωω ==  and 2

2 rad/s2.0 jωω == �� , 

we have 

                ρωRVV ×++= �
xyzXYZ  

                         ( ) ( ) ( ) m/s179.152.03.05.160.21.0919.03.0520.0 kjijijkij −+=−×+−++= . 

( )ρωωρωVωRaa ××+×+×++= ���
xyzxyzXYZ 2  

        ( ) ( ) ( ) ( ) ( ){ }jijjijjikji 5.160.21.01.03.0520.01.020919.0838.114.209.1 −××++×+−−++=  

         = 0.978i + 2.14j −−−− 2.42k m/s
2
. 

BRIEF RECAP: KINEMATICS OF RIGID BODIES 

For a fixed vector A (fixed in xyz),  

( )AωωAω
A

Aω
A

××+×=









×=








�

XYZXYZdt

d
2

2

dt

d
and  

Application of fixed vector: 

abab ρωVV ×+=  

and 

( )ababaa ρωωρωaa ××+×+= �  

General relationship: 

.Aω
AA

×+







=









xyzXYZ dt

d

dt

d
 

Relationship between velocities: 

.ρωRVV ×++= �
xyzXYZ

 

And lastly, the relationship between the accelerations  

( )ρωωρωVωRaa ××+×+×++= ���
xyzxyzXYZ 2  

 


