
 1

Isoparametric Formulation
1 INTRODUCTION
Isoparametric elements were first developed by Taig in 1958. However, related works were published only in 1966. The
development of isoparametric formulation provided the finite element method its versatility, beauty, flexibility and
power. Elements with curved boundaries could be generated using this concept. Such elements are useful in modelling
curved and irregularly shaped boundaries accurately and in grading a mesh from coarse to fine. The isoparametric ele-
ments have been successfully employed for solving one-, two- and three-dimensional problems. These include elements
used for cable structures, and plane, plate, shell and solid problems. The concept of isoparametric mapping is being
used in several mesh generation algorithms. Special elements used for modelling crack-tip singularity which have wide
applications in fracture mechanics, are also based on the isoparametric concept. It is needless to state that these applica-
tions are not limited to structural mechanics problems alone. Problems of heat conduction, fluid flow, magnetism, and
other non-structural problems also have been solved successfully making use of this excellent idea.

In isoparametric formulation, we make use of certain natural coordinates usually denoted by x, h, z. As a result, the
Jacobian of the transformation matrix needs to be invoked. The expressions for the element stiffness coefficients and
the element load vector become complicated, necessitating the use of numerical integration schemes. The Gauss quadra-
ture is most often used for this purpose.

Figure 1.1 Isoparametric quadratic (a) tetrahedron and (b) hexahedron elements with curved edges.

Fig. 1.1a shows a quadratic isoparametric tetrahedron element which has 10 boundary nodes and curved edges. Fig.
1.1b depicts a quadratic hexahedral element with curved edges which has 20 nodes. This element is a member of the so-
called serendipity family and is one of the most popular elements currently used for modelling three-dimensional con-
tinua. A finite element mesh for an elastic inclusion problem that makes use of two-dimensional eight-noded isopara-
metric quadrilateral elements is shown in Fig. 1.2.

Figure 1.2 A mesh containing eight-noded plane isoparametric quadrilateral elements used for modelling an
elastic inclusion problem.

In this chapter, we shall first see the overall idea of isoparametric formulation. Specific case of a four noded isopar-
ametric quadrilateral element is then addressed. A simple computer program is presented to demonstrate the basic con-
cepts of finite element programming. The program makes use of two simple classes, viz. the matrix and the vector clas-
ses. Thus, the object oriented programming concepts are introduced in an elementary way.

2 SUB, SUPER AND ISOPARAMETRIC FORMULATIONS
By means of isoparametric formulation, we can produce elements with curved and irregular boundaries. This is done by
making use of a mapping from the physical space of the actual curved element into a natural coordinate space of a par-
ent element with straight and regular boundaries as shown in Fig. 2.1.

 2

Let the coordinates of the nodes of the element in the physical space be denoted by xi, yi, zi, i = 1 to n, where n is the
number of nodes the element has. These nodes on the physical element are mapped onto the corresponding nodes of the
parent element as shown in Fig. 2.1. The nodal coordinates of the parent element are known in terms of the natural co-
ordinate system (x, h, z), and those of the physical element are known in terms of the physical coordinate system (x, y,
z). In Fig. 2.1b, we see a 20-noded regular hexahedral element. The nodal coordinates of the parent element in natural
coordinate system lie between the limits -1 and +1. Thus, the nodes A and B of the physical element correspond to
nodes a and b of the parent element, whose coordinates are (+1, -1, +1) and (+1, -1, -1) respectively with respect to the
natural coordinate system. The physical coordinates of these nodes could be represented as (xA, yA, zA) and (xB, yB, zB)
respectively.

Figure 2.1 (a) A curved hexahedral element in physical space being mapped onto (b) a regular hexahedron in
the natural coordinate space.

The mapping between the natural coordinates (x, h, z) and the physical coordinates (x, y, z) is related by certain
functions Ni¢(x, h, z). Thus, if we know the (x, h, z) coordinates of a point p in the natural coordinate system, the coor-
dinates of the corresponding point P in the physical coordinate system (x, y, z) are given by

, , and , 2.1

where n is the number of nodes on the element.
Let us consider the displacement field of the element next. Let the displacement components of the ith node be de-

noted by ui, vi, wi, with i = 1 to n. Then the components of the displacement vector at any point (either interior or exteri-
or) of the element are given by interpolation (as we had seen earlier in Chapter 10, Eq. 10.3.2). Thus, we have

, , and . 2.2

It may be noted that Ni¢ and Ni appearing in Eqs. 2.1 and 2.2 are polynomial functions of the natural coordinates (x,
h, z). Depending on the relative degree of these two sets of polynomials, we have the following three types of possible
finite element formulations:

(i) subparametric formulation wherein Ni¢ are of degree lower than Ni,
(ii) isoparametric formulation when Ni¢ are same as Ni, and
(iii) superparametric formulation where Ni¢ are of higher degree than Ni.

It can be proved that amongst the three formulations listed above, only the isoparametric formulation is mathemati-
cally correct and hence valid. For this reason, we shall consider only the isoparametric formulation in this book.

3 THE ISOPARAMETRIC FORMULATION
We have seen in the above section that in the isoparametric finite element formulation we use the same set of polyno-
mial functions for the interpolation of the displacement field and for the mapping between the physical and natural co-
ordinate systems. Thus, we have

, , and , 3.1

and

(b)

 x

 h

 z
 a

 b

 p

å
=

=
n

i
ii x'Nx

1
å
=

=
n

i
ii y'Ny

1
å
=

=
n

i
ii z'Nz

1

å
=

=
n

i
iiuNu

1
å
=

=
n

i
iivNv

1
å
=

=
n

i
iiwNw

1

å
=

=
n

i
iiuNu

1
å
=

=
n

i
iivNv

1
å
=

=
n

i
iiwNw

1

physical
element

parent
element

 3

, , and . 3.2

In order to arrive at the element stiffness coefficients (and also the element load vector, which we shall consider
subsequently), we need to consider the strain-displacement relations given by Eq. 2.2.2. These relations make use of
derivatives of the displacement field with respect to the physical coordinates (x, y, z). On the other hand, the interpola-
tion functions Ni’s given by Eq. 3.1 are available in terms of the natural coordinates (x, h, z). Consequently, we need to
invoke the chain rule of partial differentiation given by

.

The above rule, along with two companion expressions for the partial derivatives with respect to y and z can conven-
iently be written together using matrix notation as

.

However, unfortunately, we do not have means to evaluate the elements of the transformation matrix (the 3´3
square matrix) given above. Hence, we try the inverse relationship

. 3.3

The transformation matrix in the above is called the Jacobian matrix, and is denoted by [J]. That is,

. 3.4a

The Jacobian matrix can be written concisely using the comma notation for partial derivatives as

. 3.4b

Hence, we have

. 3.5

å
=

=
n

i
ii xNx

1
å
=

=
n

i
ii yNy

1
å
=

=
n

i
ii zNz

1

xxxx ¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

=
¶
¶ z

z
h

h
x

x

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

=

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

z

h

x

zhx

zhx

zhx

zzz

yyy

xxx

z

y

x

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

=

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

z

y

x

zyx

zyx

zyx

zzz

hhh

xxx

z

h

x

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

=

zzz

hhh

xxx

zyx

zyx

zyx

J][

ú
ú
ú

û

ù

ê
ê
ê

ë

é

=

zzz

hhh

xxx

,,,
,,,
,,,

][
zyx
zyx
zyx

J

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

=

ï
ï
ï

þ

ï
ï
ï

ý

ü

ï
ï
ï

î

ï
ï
ï

í

ì

¶
¶
¶
¶
¶
¶

-

z

h

x

1J

z

y

x

 4

The elements of the Jacobian matrix are evaluated by making use of Eqs. 3.2 and 3.4. For example, the first element
of [J], viz. J11 is obtained as

J11 .

Once the interpolation polynomials Ni are known, the derivatives appearing in the above equation, viz. ¶Ni/¶x, can
be readily evaluated. It may be recalled that xi are the nodal coordinates (in terms of the physical coordinate system)
which are known. Thus, the complete Jacobian matrix is obtained from the following:

. 3.6

Note that the sizes of the matrices are also indicated in the above equation. As the matrix of derivatives of shape func-
tions [¶N] and the matrix containing the element nodal coordinates are both easily available, the Jacobian matrix can be
calculated with no difficulty. Once the Jacobian matrix is known, we can get the derivatives of the displacement com-
ponents with respect to the physical coordinates. For example, from Eq. 3.5, we have

. 3.7

We can write the strain-displacement relations as given by Eq. 2.2.2 alternatively as

. 3.8

Now, from Eq. 3.7, we get

. 3.9

The derivatives of the displacement components with respect to the natural coordinates (x, h, z) are readily availa-
ble from Eq. 3.2. Thus, for example, we have

.

åå
==

=
¶
¶

=
¶
¶

=
n

i
ii

n

i
i

i xNxNx

11

,xxx

3

222

111

3
21

21

21

33 ,,,
,,,
,,,

][

´
´

´
ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

=

n
nnnn

n

n

n

zyx

zyx
zyx

NNN
NNN
NNN

J
!!!

"

"

"

zzz

hhh

xxx

ï
ï
þ

ïï
ý

ü

ï
ï
î

ïï
í

ì

=
ï
þ

ï
ý

ü

ï
î

ï
í

ì
-

z

h

x

,

,

,

][

,

,
,

1

u

u

u

J

u

u
u

z

y

x

ï
ï
ï
ï
ï
ï

þ

ï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï
ï

í

ì

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

ï
ï
ï
ï

þ

ïï
ï
ï

ý

ü

ï
ï
ï
ï

î

ïï
ï
ï

í

ì

z

y

x

z

y

x

z

y

x

zx

yz

xy

z

y

x

w

w
w
v

v
v
u

u
u

,

,
,
,

,
,
,

,
,

001000100
010100000
000001010
100000000
000010000
000000001

g

g

g
e

e
e

ï
ï
ï
ï
ï
ï
ï

þ

ïï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï
ï

î

ïï
ï
ï
ï
ï
ï

í

ì

ú
ú
ú

û

ù

ê
ê
ê

ë

é

=

ï
ï
ï
ï
ï
ï

þ

ï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï
ï

í

ì

-

-

-

z

h

x

z

h

x

z

h

x

,

,

,

,

,

,

,

,

,

][]0[]0[
]0[][]0[
]0[]0[][

,

,
,
,

,
,
,

,
,

1

1

1

w

w

w

v

v

v

u

u

u

J
J

J

w

w
w
v

v
v
u

u
u

z

y

x

z

y

x

z

y

x

å
=

=
n

i
ii uNu

1

,, xx

[A]

[G]

 [¶N]

 5

The above can be written in terms of the element nodal displacement vector as

,

where {ue} = [u1 v1 w1 u2 v2 w2 … un vn wn] T is the element nodal displacement vector. Similarly, we can write all
the derivatives of the displacement vector with respect to the natural coordinates. These derivatives can be jointly writ-
ten using matrix notation as:

, 3.10a

where [¶N¢] contains the derivatives of the interpolation polynomials Ni and is given by

.

3.10b

Combining Eqs. 3.8, 3.9 and 3.10, we get the strain-displacement matrix [B] (which relates the strain field within the
element to the element nodal displacement vector by {e} = [B]{ue}) as

. 3.11

In the above, [A] is a matrix containing zeros and ones as given in Eq. 3.8. The elements of the other two matrices,
viz. [G] and [¶N¢], are nonlinear functions of the natural coordinates x, h and z.

The element stiffness matrix is obtained as

. 3.12

It can be shown that

, 3.13

where | J | is the determinant of the Jacobian matrix which is denoted simply by J and is termed the Jacobian. Hence, the
element stiffness matrix is given by

. 3.14

It is impossible to evaluate the above integral analytically except in simple cases involving a regular element geome-
try (e.g., a regular hexahedron). Hence, numerical integration is used for this purpose. The most popular numerical
method is the Gauss quadrature. See Appendix (given at the end of this) for a brief description of numerical integration.

4 FOUR-NODED QUADRILATERAL ELEMENT FOR PLANE PROBLEMS
In this section, we shall demonstrate the implementation of a plane bilinear isoparametric quadrilateral element. Such an
element has four nodes. The parent element and an element in the physical coordinate space are depicted in Fig. 4.1.

[] }{00,00,00,, 21
e

n uNNNu xxxx !=

[]

ï
ï
ï
ï
ï
ï
ï

þ

ïï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï
ï

î

ïï
ï
ï
ï
ï
ï

í

ì

¶=

ï
ï
ï
ï
ï
ï
ï

þ

ïï
ï
ï
ï
ï
ï

ý

ü

ï
ï
ï
ï
ï
ï
ï

î

ïï
ï
ï
ï
ï
ï

í

ì

n

n

n

w
v
u

w
v
u
w
v
u

N'

w

w

w

v

v

v

u

u

u

!

2

2

2

1

1

1

,

,

,

,

,

,

,

,

,

z

h

x

z

h

x

z

h

x

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

=¶

zzz

xxx

zzz

hhh

xxx

,00,00,00

0,00,00,0
00,00,00,
00,00,00,
00,00,00,

][

21

21

21

21

21

n

n

n

n

n

NNN

NNN
NNN
NNN
NNN

N'

!

!

"

!

!

!

]][][[][N'GAB ¶=

òò ==
ee V

T

V
e

Te dzdydxDBBdVDBBk][

zhx dddJdzdydx ||=

ò ò ò
+

-

+

-

+

-

=
1

1

1

1

1

1

][zhx dddJDBBk Te

{ue}

 6

Figure 4.1 Plane bilinear isoparametric element.

The interpolation polynomials used for this element are obtained by multiplying the two linear Lagrangian interpola-
tion polynomials, one in terms of x and the other h. Thus, we have

 . 4.1

The interpolation polynomials given above can be concisely written as

, i = 1 to 4, 4.2

where xi and hi are the values of the natural coordinates at node i.
This element is also known as the bilinear element, as the interpolation polynomials are the product of two linear

polynomials in x and h. Note that, it is not a linear element (this is due to the presence of the xh term).
The derivatives of the shape functions with respect to the natural coordinates are easily evaluated. Thus, the matrix

[¶N] of Eq. 3.6 is obtained as

.

The derivatives of the shape functions can also be written concisely by taking the derivatives of Eq. 4.2. Thus, we have

, i = 1 to 4 4.3

, i = 1 to 4. 4.4

We shall use the expressions given by Eqs. 4.2 to 4.4 in the computer code that we present in this chapter.
The Jacobian matrix is of size 2´2, and is obtained as

.

The inverse of the Jacobian matrix can be written as

,

where Jij, with i, j = 1, 2, are the elements of the Jacobian matrix. The quantity | J | is the determinant of Jacobian matrix
(known as the Jacobian and is denoted by J), and is obtained as

J = .

Before we present a simple computer-code using four-noded isoparametric quadrilateral elements for the anlaysis of
plane problems of elasticity.

 x

 y

2

3 4

1

x

h

1 2

3 4

1 1

1

1

)1)(1(
4
1

1 hx --=N)1)(1(
4
1

2 hx -+=N

)1)(1(
4
1

3 hx ++=N)1)(1(
4
1

4 hx +-=N

)1)(1(
4
1

iiiN hhxx ++=

ú
û

ù
ê
ë

é
-++---
+-+---

=¶
)1()1()1()1(
)1()1()1()1(

][
4
1

xxxx
hhhh

N

)1(,
4
1

iiiN hhxx +=

)1(,
4
1

iiiN xxhh +=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

¶=ú
û

ù
ê
ë

é
=

44

33

22

11

][
,,
,,

][

yx
yx
yx
yx

N
yx
yx

J
hh

xx

ú
û

ù
ê
ë

é
-

-
=-

2221

12111

||
1][

JJ
JJ

J
J

21122211|| JJJJJ -=

 7

5 COMPUTER CODE WITH ISOPARAMETRIC QUADRILATERAL ELEMENTS
Computer code that uses 4-noded isoparametric quadrilateral elements for elastostatic problems is given below.

FILE NAME: femQuad4.cpp
// Program for FE Analysis of Elastostatic Problems
// Using Isoparametric 4-noded Quadrilateral Element;
// Non-zero displacement d.o.f. can be prescribed;
// Uses dynamic memory allocation

#include <fstream.h>
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#include "Mat.h"
#include "Vec.h"

void quad4(int, double, double D[4][4]);
void shape_fun(double, double);
void quad4_stress(int, double, double D[4][4], double, double, double[], int);

double eStiff[9][9];
double eLoad[9], xl[5], yl[5];
int nGauss, nEq, semiband;
double B[4][9], Jac[3][3], detJac, stress[4], strain[4];

// Gaussian coordinates and weights
const long double place[5][5] =
{
 {0., 0., 0., 0., 0.},
 {0, 0, -0.577350269189626, -0.774596669241483,
 -0.861136311594053},
 {0, 0, 0.577350269189626, 0, -0.339981043584856},
 {0, 0, 0, 0.774596669241483, 0.339981043584856},
 {0, 0, 0, 0, 0.861136311594053}
};
const long double wgt[5][5] =
{
 {0, 0, 0, 0, 0},
 {0, 2., 1., 0.555555555555555, 0.347854845137454},
 {0, 0, 1., 0.888888888888888, 0.652145154862546},
 {0, 0, 0, 0.555555555555555, 0.652145154862546},
 {0, 0, 0, 0, 0.347854845137454}
};
void main(void)
{
 ifstream fin ("femQuad4.inp");
 ofstream fout("femQuad4.out");
 fout.setf(ios::showpoint);
 fout.setf(ios::floatfield, ios::fixed);
 fout.precision(4);
 int probType, nElems, nNodes, nRestNodes, nLoadedNodes;
 int i, j, k;

 // Input data::
 fin >> nGauss >> probType;
 fin >> nNodes >> nElems;

 dMatrix X(2,nNodes);
 for (i=1; i<=nNodes; ++i)
 {
 fin >> k;
 for (j=1; j<=2; ++j)
 fin >> X(j, k);
 }
 fout << "\n*********************************\n";
 fout << "\n FINITE ELEMENT ANALYSIS PROGRAM\n";
 fout << "\n*********************************\n\n";

 8

 if (probType == 0)
 fout << "Problem Type: Plane Stress\n";
 else
 fout << "Problem Type: Plane Strain\n";
 fout << "\nNumber of nodes = " << nNodes;
 fout << "\nNumber of elements = " << nElems;
 fout << "\n\nNodal Coordinates";
 fout << "\n~~~~~~~~~~~~~~~~~\n";
 fout << "\nNode X-coord. Y-coord.\n";
 fout <<"=============================";
 for (i=1; i<=nNodes; ++i)
 {
 fout << "\n" << setw(4) << i << setw(12);
 for (j=1; j<=2; ++j)
 fout << X(j, i) << setw(12);
 }
 iMatrix elemConn(4, nElems);
 fout << "\n\nElement Connectivity";
 fout << "\n~~~~~~~~~~~~~~~~~~~~\n";
 fout <<"\n Elem Nod1 Nod2 Nod3 Nod4 Thick E\n";
 fout <<"==\n";
 dVector thick(nElems), nu(nElems), E(nElems);
 for (i=1; i<=nElems; ++i)
 {
 fin >> k;
 for (j=1; j<=4; ++j)
 fin >> elemConn(j, k);
 fin >> thick[k] >> E[k] >> nu[k];
 }
 for (i=1; i<=nElems; ++i)
 {
 fout << "\n" << setw(4) << i << setw(5);
 for (j=1; j<=4; ++j)
 fout << elemConn(j, i) << setw(7);
 fout << setw(10) << thick[i] << setw(15) << E[i];
 }

 dVector U(2*nNodes);
 iMatrix destn(2, nNodes);

 int dof;
 fin >> nRestNodes;
 fout << "\n\nNumber of nodes at which”;
 fout << “ displacement is prescribed = " << nRestNodes;
 for (i=1; i<=nRestNodes; ++i)
 {
 fin >> k;
 for (j=1; j<=2;++j)
 {
 dof = 2*(k-1) + j;
 fin >> destn(j,k) >> U[dof];
 }
 }
 nEq = 0;
 for (j=1; j<=nNodes; ++j)
 for (i=1; i<=2; ++i)
 {
 if (destn(i, j) == 0)
 {
 nEq++;
 destn(i, j) = nEq;
 continue;
 }
 else
 destn(i, j) = 0;
 }
 fout << "\n\nThe Destination Array:";
 fout << "\n~~~~~~~~~~~~~~~~~~~~~\n";

 9

 fout << "\nNode X-dof Y-dof\n";
 fout <<"========================";
 for (i=1; i<=nNodes; ++i)
 {
 fout << "\n" << setw(4) << i << setw(9);
 for (j=1; j<=2; ++j)
 fout << destn(j,i) << setw(9);
 }
 fout << "\n\nNo. of Degrees of Freedom = " << nEq;
 dVector gLoad(nEq);
 dVector gDisp(nEq);

 double load;
 fin >> nLoadedNodes;
 for (i=1; i<=nLoadedNodes; ++i)
 {
 fin >> k;
 for (j=1; j<=2; ++j)
 {
 dof = destn(j, k);
 fin >> load;
 if (dof != 0)
 gLoad[dof] += load;
 }
 }
 int node;

// Bandwidth calculation
 int small, large, diff;
 int n, l, kk[9];
 semiband = 0;
 for (i=1; i<=nElems; ++i) // scan over each element
 {
 small = nEq;
 large = 1;
 for (j=1; j<=4; ++j) // scan over each node
 {
 node = elemConn(j, i);
 for (k=1; k<=2; ++k) // scan over each dof
 {
 dof = destn(k, node);
 if (dof == 0) continue;
 if (dof < small) small = dof;
 if (dof > large) large = dof;

 }
 }
 diff = large - small;// diff gives the semi-bandwidth
 if (diff > semiband) // pick up the largest of diff
 semiband = diff;
 }
 semiband = semiband + 1;
 fout << "\nSemi-band width = " << semiband;
 int dof1, tot_dof;
 dMatrix gStiff(nEq, semiband);

 fout << "\n\nGlobal Load Vector:";
 fout << "\n~~~~~~~~~~~~~~~~~~~~~\n";
 fout << "\n Node Load-X Load-Y";
 fout <<"\n==================================";
 int dof2;
 for (i=1; i<=nNodes; ++i)
 {
 dof1 = destn(1, i);
 dof2 = destn(2, i);
 double zero = 0.0;
 fout << "\n" << setw(4) << i;

 10

 if (dof1 != 0)
 fout << setw(15) << gLoad[dof1];
 else
 fout << setw(15) << zero;
 if (dof2 != 0)
 fout << setw(15) << gLoad[dof2];
 else
 fout << setw(15) << zero;
 }

// Assembly of element matrices
 double thickness, D[4][4], pres_disp[9], eLoad_disp[9];
 for (n=1; n<=nElems; ++n)
 {
 for (i=1; i<=4; i++)
 {
 node = elemConn(i,n);
 xl[i] = X(1,node);
 yl[i] = X(2,node);
 }
 if (probType == 0)
 {
 // plane stress
 D[1][1] = D[2][2] = E[n]/(1 - nu[n]*nu[n]);
 D[1][2] = D[2][1] = D[1][1] * nu[n];
 D[3][3] = D[1][1] * (1 - nu[n])/2.0;
 }
 else
 {
 // plane strain
 double c;
 c = E[n]/(1 + nu[n])/(1 - 2*nu[n]);
 D[1][1] = D[2][2] = c*(1 - nu[n]);
 D[1][2] = D[2][1] = c * nu[n];
 D[3][3] = c * (1 - 2*nu[n])/2.0;
 }
 D[1][3] = D[2][3] = D[3][1] = D[3][2] = 0;

 thickness = thick[n];
 quad4(n, thickness, D);
 dof = 0;
 for (i=1; i<=4; ++i)
 {
 for (j=1; j<=2; ++j)
 {
 dof ++;
 node = elemConn(i, n);
 kk[dof] = destn(j, node);
 }
 }
 tot_dof = 8;
 dof1 = 0;
 for (i=1; i<=4; ++i)
 {
 node = elemConn(i, n);
 for (j=1; j<=2; ++j)
 {
 dof1 ++;
 dof = 2*(node - 1) + j;
 pres_disp[dof1] = U[dof];
 }
 }
 for (i=1; i<=tot_dof; ++i)
 {
 eLoad_disp[i] = 0.;
 for (j=1; j<=tot_dof; ++j)
 {
 eLoad_disp[i] += eStiff[i][j]*pres_disp[j];

 11

 }
 }
 for (i=1; i<=tot_dof; ++i)
 {
 if (kk[i] <= 0)
 continue;
 k = kk[i];
 gLoad[k] += eLoad[i] - eLoad_disp[i];
 for (j=1; j<=tot_dof; ++j)
 {
 if (kk[j] < k)
 continue;
 l = kk[j] - k + 1;
 gStiff(k, l) += eStiff[i][j];
 }
 }
 }

 fout <<"\n";

 gDisp = gStiff^gLoad;

 fout << "\n\nGlobal Displacement Vector";
 fout << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~";
 fout << "\n\n Node Disp-X Disp-Y";
 fout << "\n====================================";
 for (j=1; j<=nNodes; ++j)
 {
 for (i=1; i<=2; ++i)
 {
 dof = 2*(j-1) + i;
 if (destn(i, j) != 0)
 U[dof] = gDisp[destn(i, j)];
 }
 }

 for (j=1; j<=nNodes; ++j)
 {
 fout << "\n" << setw(4) << j << setw(15);
 for (i=1; i<=2; ++i)
 {
 dof = 2*(j-1) + i;
 fout << U[dof] << setw(15);
 }
 }

// Compute stresses at element Guassian points
 fout << "\n\nAverage Stresses and Strains";
 fout << " at Element Centroid";
 fout << "\n~~";
 fout << "\n\n Elem Sig_x Sig_y Sig_xy ";
 fout << "\n==";
 double pxi, pet;
 for (n=1; n<=nElems; ++n)
 {
 thickness = thick[n];
 if (probType == 0)
 {
 // plane stress
 D[1][1] = D[2][2] = E[n]/(1 - nu[n]*nu[n]);
 D[1][2] = D[2][1] = D[1][1] * nu[n];
 D[3][3] = D[1][1] * (1 - nu[n])/2.0;
 }
 else
 {
 // plane strain
 double c;
 c = E[n]/(1 + nu[n])/(1 - 2*nu[n]);

invoking the Gauss elimination by the operator “^”

 12

 D[1][1] = D[2][2] = c*(1 - nu[n]);
 D[1][2] = D[2][1] = c * nu[n];
 D[3][3] = c * (1 - 2*nu[n])/2.0;
 }
 D[1][3] = D[2][3] = D[3][1] = D[3][2] = 0;
 for (int ii=1; ii<=4; ++ii)
 {
 node = elemConn(ii, n);
 xl[ii] = X(1, node);
 yl[ii] = X(2, node);
 }
 pxi = pet = 0; //at place[1][1]—i.e., element-centroid

 // Get element displacement vector
 int dof, dof1, node;
 double u[9];
 dof1 = 0;
 for (ii=1; ii<=4; ++ii)
 {
 node = elemConn(ii, n);
 for (j=1; j<=2; ++j)
 {
 dof1 ++;
 dof = 2*(node - 1) + j;
 u[dof1] = U[dof];
 }
 }
 quad4_stress(n, thickness, D, pxi, pet, u, 8);
 fout << "\n" << setw(4) << n ;
 for (i=1; i<=3; i++)
 fout << setw(15) << stress[i];
 }
}

void quad4(int elem, double thick, double D[4][4])
{
 int j, k, l, n, na, nb, nrow, ncol;
 double dv, dum, pxi, pet;
 double BtD[9][4];

// Clear load vector and upper triangle of stiffness matrix
 for (k=1; k<=8; ++k)
 {
 eLoad[k] = 0.;
 for (l=k; l<=8; ++l)
 eStiff [k][l] = 0.;
 }
// Start Gauss quadrature loop. Use nGauss by nGauss rule
 for (na=1; na<=nGauss; ++na)
 {
 pxi = place[na][nGauss];
 for (nb=1; nb<=nGauss; ++nb)
 {
 pet = place[nb][nGauss];
 shape_fun(pxi,pet);
 dv = wgt[na][nGauss]*wgt[nb][nGauss] * thick * detJac;
 // Store [B] trans. times [D] in 8 by 3 work array [BtD]
 for (j=1; j<=4; ++j)
 {
 l = 2 * j;
 k = l - 1;
 // Multiplication that gives a nonzero product only
 // considered
 for (n=1; n<=3; ++n)
 {
 BtD[k][n] = B[1][k] * D[1][n] + B[3][k] * D[3][n];
 BtD[l][n] = B[2][l] * D[2][n] + B[3][l] * D[3][n];
 }

 13

 }
 // Loop on rows of [k]
 for (nrow=1; nrow<=8; ++nrow)
 {
 for (ncol=nrow; ncol<=8; ncol++)
 {
 dum = 0.;
 // Loop for product [B]t[D][B].
 // Zeros in [B] not skipped
 for (j=1; j<=3; ++j)
 dum += BtD[nrow][j] * B[j][ncol];
 eStiff[nrow][ncol] += dum * dv;
 }
 }
 }
 }

// Fill in lower triangle of element stiffness matrix
// by symmetry

 for (k=1; k<=7; ++k)
 for (l=k; l<=8; ++l)
 eStiff[l][k] = eStiff[k][l];
}

void shape_fun(double pxi, double pet)
{
 double N[5], Nxi[5], Net[5], dum;
 int i, l, j, k;
 int xii[5] = {0, -1, 1, 1, -1};
 int eti[5] = {0, -1, -1, 1, 1};
// Shape functions and their derivatives
 for (i=1; i<=4; ++i)
 {
 double pX = 0.25 * (1 + pxi*xii[i]);
 double pT = 0.25 * (1 + pet*eti[i]);
 N[i] = 4 * pX * pT;
 Nxi[i] = xii[i] * pT;
 Net[i] = eti[i] * pX;
 }

 // Clear array Jac and B
 for (i=1; i<=2; ++i)
 for (j=1; j<=2; ++j)
 Jac[i][j] = 0.;
 for (i=1; i<=3; ++i)
 for (j=1; j<=8; ++j)
 B[i][j] = 0.;

 // Find Jacobian and its determinant.
 for (i=1; i<=4; ++i)
 {
 Jac[1][1] += Nxi[i]*xl[i];
 Jac[1][2] += Nxi[i]*yl[i];
 Jac[2][1] += Net[i]*xl[i];
 Jac[2][2] += Net[i]*yl[i];
 }
 detJac = Jac[1][1]*Jac[2][2] - Jac[1][2]*Jac[2][1];
 // Replace Jac by its inverse.
 dum = Jac[1][1]/detJac;
 Jac[1][1] = Jac[2][2]/detJac;
 Jac[1][2] = - Jac[1][2]/detJac;
 Jac[2][1] = - Jac[2][1]/detJac;
 Jac[2][2] = dum;
 // Form [B] matrix (zero entries already set)
 for (j=1; j<=4; ++j)
 {
 l = 2 * j;
 k = l - 1;
 B[1][k] = Jac[1][1]*Nxi[j] + Jac[1][2]*Net[j];

 14

 B[2][l] = Jac[2][1]*Nxi[j] + Jac[2][2]*Net[j];
 B[3][k] = B[2][l];
 B[3][l] = B[1][k];
 }
}

void quad4_stress(int elem, double thick, double D[4][4], double pxi, double pet, double
u[], int ndof)
{
// to get stresses and strains
 int i, j, k;
 double DB[4][9];

// Get B matrix
 shape_fun(pxi, pet);
// [D]*[B]
 for (i=1; i<=3; ++i)
 {
 for (j=1; j<=8; ++j)
 {
 DB[i][j] = 0;
 for (k=1; k<=3; ++k)
 DB[i][j] += D[i][k] * B[k][j];
 }
 }
// Compute stress as DB * u and strains as B * u
 for (i=1; i<=3; ++i)
 {
 stress[i] = 0;
 strain[i] = 0;
 for (j=1; j<=8; ++j)
 {
 stress[i] += DB[i][j] * u[j];
 strain[i] += B[i][j] * u[j];
 }
 }
}

The reader, it is hoped, will find no difficulty in understanding the main program and functions given above. Comment
lines have been inserted abundantly to improve the readability of the program. It may be noted that this program is also
an elementary one, and there is ample scope in improving it. The reader is urged to go ahead and improve the program,
depending on his/her programming skill. It is possible to include a number of classes such as an element class (a base
class from which other element subclasses can be derived), a node class, material property class, shape function class,
Gauss point class and a finite element mesh class (which keeps track of all the other classes). There are a good number
of references available*, including some text books on the topic of object-oriented finite element programming†.

SAMPLE INPUT/OUTPUT:
The following is the printout of a sample input and the consequent output files. They correspond to the example shown
in Fig. 6.1.

Figure 5.1 The discretisation and element and node numbering of rectangular plate problem.

* The reader may just give OOP and FEM as key words and search to find a large amount of data available on the net. There are plen-
ty of computer codes in C++ too, available for free download!
† See, for example, Mackie, R.I., Object Oriented Methods and Finite Element Analysis, Saxe-Coburg Publ., Edinburgh, 2000.

1

2

3

4

5

1 2

6

 15

THE INPUT FILE “FEMQUAD4.INP”
2 0
6 2

1 0 0
3 100 0
5 200 0
2 0 100
4 100 100
6 200 100

1 1 3 4 2 10 10000 0.25
2 3 5 6 4 10 10000 0.25

2
1 1 0 1 0
2 1 0 0 0

2
5 300 0

 6 300 0

THE OUTPUT FILE “FEMQUAD4.OUT”

 FINITE ELEMENT ANALYSIS PROGRAM

Problem Type: Plane Stress

Number of nodes = 6
Number of elements = 2

Nodal Coordinates
~~~~~~~~~~~~~~~~~ 
 

 Node    X-coord.     Y-coord. 
============================= 
   1      0.0000      0.0000            
   2      0.0000    100.0000            
   3    100.0000      0.0000            
   4    100.0000    100.0000            
   5    200.0000      0.0000            
   6    200.0000    100.0000 
 

Element Connectivity 
~~~~~~~~~~~~~~~~~~~~ 


 Elem Nod1 Nod2 Nod3 Nod4 Thickness E
 ==
 1 1 3 4 2 10.0000 10000.0000
 2 3 5 6 4 10.0000 10000.0000

Number of nodes at which displacement is prescribed = 2

The Destination Array:
~~~~~~~~~~~~~~~~~~~~~ 
 

Node    X-dof     Y-dof 
======================== 
   1        0        0         
   2        0        1         
   3        2        3         
   4        4        5         
   5        6        7         
   6        8        9 
 

No. of Degrees of Freedom = 9 
 
Semi-band width = 8 
 



 16 

Global Load Vector: 
~~~~~~~~~~~~~~~~~~~~~ 


 Node Load-X Load-Y
==================================
 1 0.0000 0.0000
 2 0.0000 0.0000
 3 0.0000 0.0000
 4 0.0000 0.0000
 5 300.0000 0.0000
 6 300.0000 0.0000

Global Displacement Vector
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Node        Disp-X         Disp-Y 
==================================== 
   1         0.0000         0.0000               
   2         0.0000        -0.0015               
   3         0.0060         0.0000               
   4         0.0060        -0.0015               
   5         0.0120         0.0000               
   6         0.0120        -0.0015 
 
Average Stresses and Strains at Element Centroid 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Elem Sig_x Sig_y Sig_xy
==
 1 0.6000 -0.0000 -0.0000
 2 0.6000 0.0000 0.0000

The data used in the above example is identical to that in Chapter 10 (see Fig. 10.4.1). The results are exact as in the
case of triangular elements. The reader is urged to modify the program for plotting given in Section 10.5.1 for the case
of four-noded quadrilateral elements. Minor modification is needed to include the fourth node of the element.

As a second example, let us consider the same cantilever beam given in Section 10.5.2. The geometry of the beam,
the support conditions and the loading are shown in Fig. 6.2. A simple program to generate the mesh is made. The re-
sults from the finite element analysis program are presented in Table 6.1.

Figure 5.2 Geometry, support and loading of the cantilever beam

The data used for this example problem (in consistent units) are:
Span of the beam = 1000
Depth of the beam = 100
Thickness = 1
Modulus of elasticity, E = 2´105
Poisson’s ratio, n = 0.2
Load, P = 100

The strength of materials solution for the beam are obtained as follows:
(a) The deflection at the free end of the beam, Dmax =Pl3/3EI = 2.0
(b) Maximum bending stress, sxmax = M/Z = 60

Table 5.1 Finite element results of the cantilever beam problem for different discretisations (compare with
the strength of materials solutions of Dmax = 2.0 and sxmax = 60).

Discretisation* nNodes nElems Dmax sxmax
10´4 55 40 1.4175 30.17
20´6 147 120 1.8208 44.44
40´10 451 400 1.9614 53.36

(* the number of divisions along the span and depth directions)

 P

 17

It can be seen from the above table that the deflection converges faster than the convergence with triangular ele-
ments. The stresses shown in the table correspond to the centre of the elements located at the top and bottom ends at the
fixed support of the cantilever beam, and hence are not at the extreme fibres. This is the reason why the stresses given
in the above table seem to be less accurate than the ones in Table 10.5.2 in comparison with the strength of material
solution. It can further be observed, for example, corresponding to the last set of discretisation (i.e., with 400 elements),
the stress calculated with the strength of materials approach at the centre location of the element at the top (or bottom)
edge close to the support works out as 60´(45/50)´(987.5/1000) = 53.325, which is quite close to the value shown in
the table.

OPTIMAL STRESS POINTS
We had seen in the last chapter that once the nodal displacements of an element are known, it is possible to obtain the
displacements at any point on the element using interpolation. Then the strain at any point on the element is obtained by
making use of the strain-displacement relations, and the stresses by using the constitutive relations. As the strain-
displacement relations involve (partial) differentiation, and as numerical differentiation always introduces additional
errors, the strains, and hence the stresses too, are evaluated with less accuracy.

As a general observation, it can be stated that the stresses computed at the nodes are least accurate. On the other
hand, in most of the finite element analyses, it is convenient and important to obtain the nodal values of the stresses.
The stresses are evaluated with maximum accuracy at a few points on the element called optimal points (known as the
Barlow points) which are located in the interior of the element. The stress values at the finite element nodes are ob-
tained by extrapolating from the values at the optimal sampling points after averaging the values obtained at each node
from the neighbouring elements. For isoparametric elements, these sampling points are located at the Gauss points of
one order less. There exists a standard Gauss rule for each type of element. For example, for a plane four-noded quadri-
lateral element a 2´2 Gauss rule is sufficient, and for an 8- or 9-noded quadratic element a 3´3 rule is needed. For these
elements, the Barlow points are located at the Gauss points corresponding to 1´1 rule for the four-noded element, and
2´2 rule for the 8- or 9-noded element. This is the reason why the stresses in the above example are computed at the
centre (which coincides with the 1´1 Gauss point location) of the element.

6 ISOPARAMETRIC LAGRANGIAN ELEMENTS FOR PLANE PROBLEMS
Higher order isoparametric Lagrangian elements are available for plane problems. However, Lagrangian quadratic and
higher order elements have one or more internal nodes. These nodes are not connected to either neighbouring elements
or boundary points. This is the main reason why higher order Lagrangian elements are not as popular as their counter-
parts—the so-called serendipity elements (to be discussed in the next section). Nevertheless, Lagrangian elements have
some specific advantages over the serendipity elements: (i) it is easy to obtain the shape functions for any higher order
element, and (ii) they are numerically more stable under high distortion of the element.

QUADRATIC ELEMENT
Fig. 6.1 shows the Lagrangian quadratic element which has nine nodes. Truly speaking, this is a bi-quadratic element
(i.e., quadratic in two orthogonal directions). The most common numbering of the nodes for this element proceeds with
the corner nodes being numbered first, followed by the mid-side nodes and the interior node being numbered last—as
node 9—as shown in the figure.

Figure 6.1 Isoparametric Lagrangian quadratic element with nine nodes: (a) the parent element and (b) the
physical element.

CUBIC ELEMENT
The Lagrangian cubic element has 16 nodes and is shown in Fig. 7.2 in both the physical coordinate system and in the
natural coordinate system. There are four internal nodes. See Appendix A for a more elaborate discussion on Lagrangian
interpolation polynomials.

 (a)

x

h

1 2 5

3

6

4 7

8
9

(b)

 x

 y

1

2

5

3

6 4
7

8

9

 18

Figure 6.2 Isoparametric Lagrangian cubic element with 16 nodes: (a) the parent element and (b) the physical
element.

7 SERENDIPITY ELEMENTS
Serendipity elements are a class of finite elements which have very few or no interior nodes. The quadratic element of
this family has eight (boundary) nodes as shown in Fig. 8.1. The shape functions of the serendipity elements are derived
by an interesting procedure described below.

Figure 7.1 Isoparametric quadrilateral element of the serendipity family with eight nodes: (a) the parent ele-
ment and (b) the physical element.

The shape functions of the midside nodes are found first as the product of a quadratic interpolation polynomial along
the direction of the edge (i.e., x or h) and a linear interpolation in the perpendicular direction. Thus, the interpolation
polynomial of node 5 is worked out as

.

Similarly, we obtain the shape functions of the remaining midside nodes as

,

and
.

The shape of N5 and N8 are shown in Fig. 8.2a and b. Now, let us see how the shape function for the corner node,
say node 1, is obtained. Consider the bi-linear shape function for node 1 (i.e., considering it as a 4-noded element). The
shape of this bilinear interpolation function (denoted by N1B) is shown in Fig. 8.2c. The interpolation function for node
1 is obtained by nailing down the bilinear shape at nodes 5 and 8 (so that they have zero values at these nodes) by sub-
tracting one half each of N5 and N8. That is

.

(a)

x

h

1 2 5

3

7

4 10

8

9

6

11

12 13 14

15 16

(b)

3
9

10

 x

 y

1

2

5

6

4 7

8

11

12
13

14

15
16

(a)

x

h

1 2 5

3

6

4 7

8

(b)

 x

 y

1

2

5

3

6 4

7

8

)(
)(

))((
))((

75

7

2515

21
5 hh

hh
xxxx
xxxx

-
-

--
--

=N)1)(1(
)11(
)1(

)10)(10(
)1)(1(2

2
1 hxhxx

--=
--
-

-+
-+

=

)1)(1(2
2
1

6 hx -+=N

)1)(1(2
2
1

7 hx +-=N

)1)(1(2
2
1

8 hx --=N

82
1

52
1

11 NNNN B --=

 19

Figure 7.2 Serendipity shape functions for the midside nodes: (a) node 5 and (b) node 8; (c) the bilinear shape
function for node 1 denoted by N1B; and (d) serendipity shape function for the corner node 1 obtained as N1B -
½ N5 - ½ N8.

The shape functions for the remaining three corner nodes are obtained likewise. Thus, we have

,

and
.

The above shape functions put together can be written as

,

for i = 1 to 4,
,

for i = 5 and 7, and
,

for i = 6 and 8. In these expressions, xi and hi are the values of the natural coordinates at node i.

Figure 7.3 Cubic element of the serendipity family with 12 nodes: (a) the parent element and (b) the physical
element.

The shape functions for higher order (cubic and higher) serendipity elements are derived in the same way. The cubic
element of the serendipity family has 12 boundary nodes (and no interior node) and is shown in Fig. 8.3.

8 TRANSITION ELEMENTS
While using isoparametric elements of different degree interpolations, it becomes necessary to use transition elements.
For example, consider the finite element mesh shown in Fig. 9.1 where the mesh is changing from bilinear element at
top left corner (element 1) to a biquadratic elements at bottom right corner (elements 5 and 6). Transitions elements
with nodes varying from 5 to 7 become necessary to connect the bilinear and quadratic elements as shown in the figure.
The interpolation polynomials for such elements are developed following the procedure for the serendipity element ex-
plained in the last section.

x

h

1 N5

(a)

1 5 2

3 4
6

7
8

x

h

1

N8

(b)

x

h

1 N1
B

(c)

x

h

1 N1

(d)

62
1

52
1

22 NNNN B --=

72
1

62
1

33 NNNN B --=

82
1

72
1

44 NNNN B --=

)1)(1()1)(1()1)(1(2
4
12

4
1

4
1 hxxhhxhhxx -+-+--++= iiiiiN

)1)(1(2
2
1

iiN hhx +-=

)1)(1(2
2
1 hxx -+= iiN

(a)

x

h

1 2 5

3

7

4 10

8

9

6

11

12

 (b) 3 9
10

 x

 y

1

2

5
6

4 7

8

11

12

 20

For example, for the element 4 in Fig. 9.1, there are five nodes. The shape function for the only midside node is first
derived as the product of one-dimensional linear polynomial in x and a quadratic polynomial in h. The interpolation
polynomials at corners on either side of this node are obtained by subtracting half of this mid-node interpolation func-
tion from the bilinear functions of the corner nodes. The remaining two corners will have the usual bilinear shape func-
tions.

Figure 8.1 Element 1 is a bilinear element; elements 5 and 6 are eight-noded quadratic serendipity elements;
and elements 2, 3 and 4 are transition elements with six, six and five nodes respectively.

Numerical Integration
A STANDARD GAUSS QUADRATURE
Amongst the various numerical integration schemes, the Gauss quadrature is the most popular one. It makes use of less
number of functional evaluations to achieve maximum accuracy. The advent of isoparametric finite element formulation
gave an added popularity to Gauss quadrature. It is still the most preferred quadrature rule for both finite and boundary
element applications.

ONE-DIMENSIONAL INTEGRATION
A one-dimensional integral having arbitrary limits a and b is first transformed into one with limits -1 and +1, by mak-
ing use of the substitution x = ½(b - a) u + ½(b + a). Thus, the integral

gets transformed into

,

where F(u) includes the Jacobian of the transformation, J = dx/du = ½(b - a), as well.
Gauss quadrature formula is given by

, A.1

where n is the number of Gaussian points (which equals the number of functional evaluations). The above formula gives
the integral as the weighted sum of the function evaluated at n number of sample points ui, which are called the abscis-
sae. The quantities Wi are known as the weights. Table A.1 provides the values of ui and Wi for several values of n. As
many digits as the computer allows should be used in programming Gauss quadrature to avoid round off errors. The
derivation of the formula given in Eq. A.1 with detailed description and extensive tables containing the values of ui and
Wi for different values of n are available elsewhere*.

With n number of Gaussian points a polynomial of degree 2n - 1 is integrated exactly. If F(u) is not a polynomial,
Gauss quadrature is not exact. However, accuracy improves with more number of Gaussian points. The abscissae values
are known to be the roots of Gauss-Legendre polynomial and they are located symmetrically with respect to the centre
of the interval.

* See, for example, Stroud, A.H, and Secrest, D., Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ,
1966, and Kopal, Z, Numerical Analysis, John Wiley & Sons Inc., New York, 1961.

1 2 3

4 5 6

ò=
b

a

dxxfI)(

ò
-

=
1

1

)(duuFI

åò
=-

==
n

i
ii uFWduuFI

1

1

1

)()(

 21

Table A.1 Abscissae and weights for standard Gauss quadrature.

Number of
Gauss points Abscissa, ui Weight, Wi

1 0.0 2.0
2 ± 0.57735 02691 89626 1.0

3
± 0.77459 66692 41483
 0.

0.55555 55555 55556
0.88888 88888 88889

4
± 0.86113 63115 94053
± 0.33998 10435 84856

0.34785 48451 37454
0.65214 51548 62546

6
± 0.93246 95142 03152
± 0.66120 93864 66265
± 0.23861 91860 83197

0.17132 44923 79170
0.36076 15730 48139
0.46791 39345 72691

8

± 0.96028 98564 97536
± 0.79666 64774 13627
± 0.52553 24099 16329
± 0.18343 46424 95650

0.10122 85362 90376
0.22238 10344 53374
0.31370 66458 77887
0.36268 37833 78362

TWO- AND THREE-DIMENSIONAL INTEGRATIONS
By successive application of one-dimensional Gauss rule, we get the rules for two- and three-dimensional integrations
as

 A.2

and

. A.3

In Eqs. A.2 and A.3, the quantities n1, n2 and n3 are the number of Gaussian integration points along u, v and w di-
rections respectively. These numbers could be, in general, different.

The three Gauss formulae as given by Eqs. A.1 to A.3 can be easily implemented on a computer. The abscissae and
weights are usually stored in two-dimensional arrays. A nested loop is used to evaluate the integrals.

SUMMARY
Let us briefly examine the important points that we have seen in this chaper.
• The advantages of the isoparametric formulation were first discussed.
• Sub, super and isoparametric formulations were defined.
• The isoparametric formulation was considered at length. We saw that the transformation is effected by the Jacobian

matrix.
• Numerical integration becomes necessary to obtain the resulting stiffness matrix and the load vector.
• A simple computer code for the analysis of plane problems of elasticity using four-noded isoparametric bilinear

element was presented. The code is elementary with ample scope for further refinements and sophistications.
• Higher order Lagrangian and serendipity elements were discussed. The use of transition elements was indicated.
We shall see some of the advanced topics related to the finite element analysis in the next chapter.

~~~~~~<><><>~~~~~~ 

ååò ò
= =- -

==
1 2

1 1

1

1

1

1
2 ),(),(

n

i

n

j
jiji vuFWWdvduvuFI

åååò ò ò
= = =- - -

==
1 2 3

1 1 1

1

1

1

1

1

1
3 ),,(),,(

n

i

n

j

n

k
kjikji wvuFWWWdwdvduwvuFI


