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Rolling Resistance

Consider a hard roller, supporting a load 
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Consider a hard roller, supporting a load 
W at the centre, moving without slipping 
along a horizontal surface.

A force P is needed to maintain uniform 
motion.

This can be explained by considering 
the deformation of the surface.

The reaction N is thus oriented at any 
angle α.



As φ is small,

Coulomb suggested that “a” depends on 
the materials, irrespective of W and r.
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There are other opinions too in this 
regard. 

Coef. of Rolling Resistance (a mm)

Steel on steel 0.18 – 0.38

Steel on wood 1.52 – 2.54

Tyre on smooth road 0.50 – 0.76

Tyre on mud road 1.00 – 1.50

Hardened steel on h.s 0.005 – 0.01



Example: What is the rolling resistance 
of a railway coach weighing 1500 kN? 
The wheels are of 750 mm diameter, 
and the coefficient of rolling resistance 
between the wheel and the rail is 0.025 
mm.

*

If it were a truck with the same weight, 
what is the value of the rolling 
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what is the value of the rolling 
resistance? The diameter of the tyres 
are 1.2 m, and a = 0.62 mm.

(* the number of wheels has no 
influence; we divide by n and then 
multiply by it again).
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Example: A block C weighing 10 kN is 
being moved on rollers A and B, each 
weighing 1 kN. What force P is needed 
to maintain steady motion? The 
coefficient of rolling resistance between 
the rollers and the ground is 0.6 mm, 
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between block C and the rollers is 0.4 
mm.

  10 kN 
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Properties of Surfaces

A variety of quantitative descriptions of 
surfaces are necessary in engineering 
work.

First Moment of Area and the 
Centroid
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The first moment of a coplanar surface 
of area A about the x-axis is defined as 

Similarly, the first moment of the area 
about y-axis is 

∫=
A

x dAyM

∫=
A

y dAxM

 x 

 y 



These two quantities Mx and My convey 
a certain idea about the shape, size and 
orientation of the area which is useful in 
mechanics.

We can notice the similarity of this with 
the case of a distributed parallel force 
system.

In that case, we could replace the force 
system by a single resultant force 
located at a particular point (x, y).

– –
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located at a particular point (x, y).

Likewise, we can imagine the entire 
area to be concentrated at a single point 
called the centroid with the coordinates 
(xc,  yc).

To compute these coordinates, we 
equate the moments of the distributed 
area with that of the concentrated area 
about both the axes.



Thus, 

Therefore, 
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Similarly, 
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The location of centroid of an area is 
independent of the location of the 
reference axes.

That is, the centroid is a property only of 
the area itself.
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All axes passing through the centroid 
are called centroidal axes.

The first moment of an area about any 
of its centroidal axes is zero.

Examples: Determine the centroid of the 
following areas:
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(c) 

At x = b, y = h.  

Hence, C = h/bn
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For a rectangle: n = 0

For a triangle: n = 1

For a parabola: n = 2
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(d)  
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Area with One Axis of Symmetry
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(as for every +x dA, there exists a –x dA)

Hence, the centroid must lie on the axis of 
symmetry.

0== ∫
A

c dAxxA



Composite Areas

Example: Determine the centroid of the 
following area:

(a)
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 C 
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Area A = 302 + 30××××20/2 = 1200 mm2

Taking moment about AB, 

Similarly, taking moments about AC
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Example: Determine the centroid of the 
following area (all dimensions shown 
are in mm): 50 
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Area,

Taking moments of area about the 
bottom edge

Similarly, 

12 

2
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Exercise: Determine the centroid of the 
following areas:

 

50 mm 

10 mm 

20 mm 

 A  B 

 C 

8 mm 

(a) 

National Institute of Technology Calicut

20 mm 

10

20

(b)

All dimensions 

are in mm



Second Moments and 
the Product of Area

Second moments of an area A about x
and y coordinates are defined as

Ixx and Iyy cannot be negative, in 
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Ixx and Iyy cannot be negative, in 

contrast to the first moments.

Similar to the concept of centroid, the 
entire area is assumed to be 

concentrated at (kx, ky) such that 
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The distances kx and ky are called radii 

of gyration.

They depend on both the shape of the 
area and the position of the x, y axes 
(unlike centroid).

The product of area is defined as

Ixy could be positive, negative or zero.

∫=
A
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Ixy could be positive, negative or zero.
 

 x 

 y 

 − x  dA 

 x 

If the area has an 
axis of symmetry, 
the product of area 
for this axis and 
any axis 
orthogonal to this 
axis is zero.



Transfer Theorems
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In the above figure, x′ and y′ are the 

centroidal axis.
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Ixy about any axis = Ix’y’ about any

parallel axis through centroid + c d A

Important Note: The distances c and d

are measured from the x and y axes to 

the centroid.



Example: Find Ixx, Iyy and Ixy of a 

rectangle of size b and d about the x
and y axes shown in figure.
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Example: Find Ixx, Iyy and Ixy of the 

rectangle of size b and d about the 
centroidal x and y axes shown in figure.
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Similarly, we get

and

which is due to the lines of symmetry.
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From the above example, we can see 
the validity of transfer theorems. Thus, 
we have the second moment Ixx about 
the base is  
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Example: Find Ixx of a circle about one 
of its diameters. 

 x 
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Ixy = 0 as 
there are an 
infinite 
number of 
lines of 
symmetry!
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Example: Determine Ixx, Iyy and Ixy of the 

section shown in figure about its 
centroidal axes. 
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Dividing the 
area into two—

A1 and A2—we 

get:

A1 = 500 mm2 

A2 = 400 mm2

& A = 900 mm2
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& A = 900 mm

The centroidal distances xc and yc are 
obtained by taking moments of the 
area about the bottom and left side 
edges. Thus, we obtain
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Due to symmetry, xc = yc



Redraw the figure, now marking the 
centroidal distances too. Thus
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Example: Determine Ixx, Iyy and Ixy of the 

section shown in figure about the x and 
y axes shown. Also determine the 
centroid and calculate the second 
moments and the product of the area 
about the centroidal axes. Given t is 
very small when compared to R.
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The remaining part is “homework”.
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Coordinate Transformation—
Concept of Cartesian Tensor

A.  Scalar (Zeroth order tensor)

A scalar quantity, say the temperature T
at a point, remains invariant when the 
coordinate axes are rotated.

B. Vector (First order tensor)

Next, let us consider a vector, say a 
force vector F. 

Although the vector as such remains the 
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Although the vector as such remains the 
same, its components keep varying as 
the coordinate axes are rotated.

The question is this: If Fx and Fy

components of F are known with 
respect to x and y coordinates, 
determine the components Fx’ and Fy’

with respect to x’ and y’ coordinates, 
which are obtained by rotating x and y
by an angle θ.



From the above, it is easy to verify that
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and

which can be written using matrix 
notation as

θθ sincos yxx FFF +=′

θθ cossin yxy FFF +−=′

















−
=









′

′

y

x

y

x

F

F

F

F

θθ

θθ

cossin

sincos



The above transformation can be 
written more concisely as

where 

is called the rotation transformation 
matrix. It is an orthogonal matrix (which 

means that R–1 = RT as RRT = I).
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Eq. [A] represents the transformation 
law for vectors (in other words, all the 
quantities that transform according to 
Eq. [A] are called vectors).

The position vector at a point also 
transforms according to the same law 
which can be written as
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B. Second Order Tensor—Dyadic

The second moment of area and the 
product of area put together for a given 
area at a point can be written as follows:

which is a symmetric matrix. Now the 
question is this: 
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question is this: 

Given the above components of the 
second moment area tensor with 
respect to x and y coordinates, 

determine the components (Ix’x’, Iy’y’ and 

Ix’y’) with respect to x’ and y’

coordinates, which are obtained by 
rotating x and y by an angle θ.

We proceed as follows.
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which is written as
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Iy’y’ is obtained from the above by 

replacing θ by θ + π /2. Thus, we obtain

Similarly, we obtain Ix’y’ as

The above three results can be 
represented using matrix notation as
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represented using matrix notation as

Or
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Principal Axes

Thus, we have seen that as the angle θ
changes, we start getting different 
components for the area tensor.

Now the question arises: Is there any 

value of θ at which Ix’x’ takes on a 

maximum (or minimum value)?

Ix’x’ is maximum when
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or

where θ corresponds to an extreme 

value of Ix’x’. 

There are two possible values of θ
which are π /2 radians apart.
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The axes corresponding to these angles 
are called the principal axes.

The second moments of area about 
these axes are called the principal 
moments of area—one being the major 
principal moment and the other the 
minor principal moment.

Next, let us determine the product of 
area about the principal axes.
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yyxx

I
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Dividing the above by cos 2θ we get

Thus, we see that the product of area is 
zero about the principal axes.
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Moreover, we see that

is a constant.

Now, for any orthogonal set of axes we 
have

yyxxyyxx IIII +=+ ''''
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Ixx+ Iyy is called the polar moment of 
area denoted by J or IP and is 
independent of the orientation of the 
axes.

 x 

∫∫ =+=+
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Since Ixx+ Iyy = a constant, it is termed 

as an invariant. We can also show that 

Ixx Iyy –Ixy
2 is also an invariant under 

rotation of axes.

Example: Determine the principal 
moments of area of the plane area 
shown below about the centroidal axes.

  y 
10 We have seen 

earlier that the 
area, the 
centroidal 
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The principal axes are given by

or, 2θ = π /2. 

That is, θ1 = π /4 and θ2 = 3π /4.

The principal moments of area are:
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It may be verified that
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Principal Moments of Area as an 
Eigenvalue Problem

Find the direction cosines l and m of the 
principal axis (the axis which 

corresponds to an extreme value for Ix’x’.

Let 

Then, the equation for Ix’x’ is given by

Let us maximise this with respect to the 
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mlImIlII xyyyxxxx 2
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Let us maximise this with respect to the 
constraint that 

This can be done using the Lagrange 
multiplier technique: Thus, maximise

which leads to
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That is

Similarly, equating derivative of F with 
respect to m to zero and putting them 
together, we get

which is a matrix eigenvalue problem of 
the form

As the matrix [Ix] is symmetric, the 
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As the matrix [Ix] is symmetric, the 

eigenvalues are always real (and not 
complex). 

Hence, the principal moments of area 
are always real. 

Exercise: Determine the principal axes 
and the principal moments of area of 
the following plane area at the point A:
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Thus the area tensor is given by:

Solving the eigenvalue problem, we get

which corresponds to the characteristic 
equation given by
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where

and

The solution of equation [A] gives the 
eigenvalues. 
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Determine the principal axes and the 
principal moments of areas for the 
following sections at A.
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