NAME \qquad

National Institute of Technology Calicut Department of Computer Science and Engineering PhD Admission Written Test- Part I

Time: 1 Hour

Max. Marks : 20

1. Which of the following statements is not correct?

1 Mark
a) Quicksort is a stable sorting algorithm.
b) Mergesort takes $\theta($ nlogn $)$ running time in the average case.
c) Insertion sort runs in $\theta\left(\mathrm{n}^{2}\right)$ time in the worst case.
d) Heap sort runs in $\theta($ nlogn $)$ time in the worst case.
2. The contents of a hash table of size 11 with open addressing and quadratic probing with the hash function $\left(\mathrm{k} \bmod 10+3 \mathrm{i}+\mathrm{i}^{2}\right) \bmod 11$, after inserting 6 elements into the table is as shown below. To which of the slot will the next key with value 14 will be hashed into? 1 Mark

			3	15	5		23	18	9

i) 0
ii) 1
iii) 2
iv) 6
v) 10
3. Which of the following statements regarding Priority Queue is/are incorrect?

1 Mark
i) The maximum value in a min- heap with distinct values will be amongst the leaf nodes.
ii) The maximum Value in a max-heap will be the root.
iii) HEAP-INCREASE-KEY operation of a max-heap is $\mathrm{O}(\lg \mathrm{n})$.
iv) HEAP-MAXIMUM operation of a max-heap is $\mathrm{O}(\lg \mathrm{n})$
v)The running time of Heap-EXTRACT-MAX of a max-heap is $O(1)$.
4. Which of the following arrays is not a Max-heap?

1 Mark
a) 1286341
b) $21 \quad 2019 \quad 18 \quad 17 \quad 16$
c) 15
$\begin{array}{llll}11 & 13 & 10 & 9\end{array}$
12
d) $56 \quad 50 \quad 42 \quad 48 \quad 4644$
5. Which of the following is the post-order travel of a Binary Search Tree whose preorder traversal is 30 241682728364038.
a) 28271682438403630
b) 81628272438403630
c) 38403628271682430
d) 16827242840383630
6. Let T be a BFS tree of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with root r . Let $\mathrm{d}(\mathrm{u}, \mathrm{v})$ denote the length of the shortest path between the nodes u and v. If v is visited before u in the breadth-first search traversal of T, which of the following statements is true?

1 Mark
a) $d(r, v)=d(r, u)$
b) $\mathrm{d}(\mathrm{r}, \mathrm{v})<\mathrm{d}(\mathrm{r}, \mathrm{u})$
c) $d(r, v)>d(r, u)$
d) $d(r, v)<=d(r, u)$
e) $d(r, v)>=d(r, u)$
7. The algorithm for insertion and deletion of nodes to a doubly linked list is as shown below. The data structure given below will work as :

1 Mark

List-Insert (L, x)	List - Delete (L)
1. $\mathrm{x} . \mathrm{next}=\mathrm{L}$. head	1. $\mathrm{x}=\mathrm{L}$. head
2. If L.head $\neq \mathrm{NIL}$	2. x. next.prev $=\mathrm{NIL}$
3. \quad L.head.prev $=\mathrm{x}$	3 L.Head = x.next
4. L.head $=\mathrm{x}$	4 return (x.data)
5. x. prev $=$ NIL	

a) Queue
b) Stack
c) Priority Queue
d) None of these.
8. Consider a a graph $G=(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}|=\mathrm{n}$ and k components. If a vertex v $\mathcal{E} \mathrm{V}$ is removed from the graph the number of components in the resultant graph will be
a) $k-1 \quad$ b) $k+1 \quad$ c) between k and $n \quad d)$ between $k-1$ and $n-1$
e) between $k+1$ and $n-k$
f)between k-1 and $\mathrm{k}+1$
9. Write the recurrence relation for the running time of the following recursive function.
2 Marks $\operatorname{Sum}(a, i, n)$

1. if $(i<n)$
2. $\operatorname{return}(a[i]+\operatorname{Sum}(a, i+1, n))$
3. What would be the minimum and maximum number of elements in a heap of height h ?

2 Marks
11. Is $3^{n}=O\left(2^{n}\right)(Y e s / N o)$? Justify your answer. (Write the answer on the other side of this sheet)
2 Marks
12. Solve the following recurrence relation .

2 Marks

$$
\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 4)+\theta(1)
$$

13. What is the probability that an n node BST with unique keys constructed using only BST insertion operations have a height exactly equal to $n-1$ (Assume that every input sequence is equally likely)? Prove your answer.
2.5 Marks
14. Write an $\mathrm{O}(\mathrm{n})$ algorithm that takes as input a pointer to a singly linked list containing integer data and return the number of nodes having data that is a multiple of 5 .
2.5 Marks
(Write the answer on the other side of this sheet)
