
Statically Indeterminate Structures 
 

Force Method of Analysis of Indeterminate Structures 
 

• Any structure whose reactions or internal stress resultants cannot be determined using the equations of 
static equilibrium alone is statically indeterminate 

• Additional equations called compatibility conditions or consistency conditions are necessary 
• A statically indeterminate structure is also termed as a redundant structure 
• Degree of Static Indeterminacy (DSI) is the number of unknown reactions in excess of the number of 

equations of equilibrium 

A. Continuous Beams 
A statically indeterminate structure can be made determinate by identifying a number of redundant reactions 
(or simply redundants) equal in number to the DSI such that the resulting determinate structure is stable. Once 
the redundants are removed, the structure becomes a statically determinate one (known as the primary or basic 
structure). 
Example 1: A propped cantilever with loads is shown in Fig. 1. DSI = 1 (= 4 – 3, the number of unknown 
reactions minus the number of equations of equilibrium). The free body diagram is shown in Fig. 2. 

          

 
In the above, either VB can be chosen as the only redundant (then the primary structure is a cantilever) or MA 
can be chosen as the redundant (the primary structure then is a simply supported beam). 
Example 2: A continuous beam is loaded as shown in Fig. 3 with DSI = 3 (= 6 – 3). The free body diagram 
is shown in Fig. 4. 

     

 
In the above, we may choose VB, VC and VD as the redundants. Then the primary beam is a cantilever. An 
alternative is to consider MA, VB and VC as the redundants. Then we end up with a simply-supported beam as 
the primary structure. The former choice with redundants is as shown in Fig. 5. 

      
The redundants are R1, R2 and R3 (the unknown reactions in excess of the number of equations of equilibrium). 
The redundants are determined using the compatibility conditions as described below. Let the deflections of 
the supports B, C and D be D1, D2 and D3 respectively (positive along Ri). The determinate structure shown 
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above is analysed by first removing all the redundants. Let D10, D20 and D30 represent the deflections of the 
primary structure due to the applied loads as shown in Fig. 6. 

 
Then remove the external loads and determine the flexibility influence coefficients (fij denoting the deflection 
at the ith redundant along Ri due to a unit load applied at j along Rj) by applying a unit load corresponding to 
each redundant one at a time. Fig. 7 depicts the flexibility coefficients when R1 = 1. 

 
Then, the compatibility condition at ith redundant point is: 
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which can be written concisely as D 0 + [ f ] R = D, where [ f ] denotes the flexibility matrix (a square matrix 
of size n´n. The following exercises demonstrate the application of the method. 
Exercise 1: The continuous beam in Fig. 8 is loaded as shown. Its supports B and C settle down by 4 mm and 
7 mm respectively. The flexural stiffness of the beam is EI = 1.2´105 kN m2. Determine the support reactions 
and draw the shear force and bending moment diagrams. Also find the deflection under the 60 kN load. 

 
For the above beam, DSI = 2 with R1 and R2 as the redundants at B and C. The primary structure is shown in 
Fig. 9 below with the three separate loading cases: (a) due to the applied load, (b) due to R1 = 1 and no R2, 
and (c) due to R2 = 1 and no R1. Thus: 

 

 

 
The deflections Di0 and fij are computed as shown in the table and the following lines. 
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Member Origin Limits (m) M m1 m2 

CB C 0 – 6 –10 x2/2 0 x 
BD B 0 – 2 –60 (x + 3) x x + 6 
DA D 0 – 3 –60 (x + 5) –60 x x + 2 x + 8 
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The two compatibility equations for this beam are: D10 + f 11 R1  + f 12 R2 = D1  and D20 + f 21 R1  + f 22 R2 = D2 
That is: 
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Solving the above two algebraic equations simultaneously, we get R1 = 53.015 kN and R2 = 26.923 kN. 
The end moments and support reactions then are:  

MC = 0 kN;  MB = R2 ´ 6 – 10´62/2 = –18.462 kNm;  

MA = R2 ´ 11 + R1 ´ 5 – 10´6´(3 + 5) – 60´3 = –98.772 kNm;  

and VA = 60 + 6´10 – R1 – R2 = 40.062 kN 
Once all the support reactions are known for the beam, it should not be difficult to plot the shear force and 
bending moment diagrams. The deflection under the 60 kN load can be determined using, for example, the 
unit load method. These are left as home-work exercises.  

B. Indeterminate Frames 
The equation that we derived for the continuous beam is equally valid for building frames also as given in Eq. 
(1.1). This is reproduced for convenience: 

∆!" + ∑ 𝑓!#𝑅#$
#%& = ∆!, for i = 1 to n  

where Di0 is the displacement in the primary structure (obtained by removing DSI number of redundants) cor-
responding to the redundant Ri due to the applied loading, fij are the flexibility coefficients and Di is the final 
displacement of the indeterminate structure at i along Ri (which is normally zero except when the support 
settles down or moves by a known amount). 
Exercise 2: Analyse, find all the support reactions and draw the BMD of the plane frame shown in Fig. 10. 

 

Here DSI = 1. Let us choose VA (R1) as the redundant as shown in Fig. 10 (a). Then we can tabulate M and m 
as shown below. The calculations shown beneath the table are self-explanatory. 
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Portion Origin Limits (m) M m 
AB A 0 – 2 0 – x 
BC B 0 – 2 30 x – (2 + x) 
CD C 0 – 4 60 + 10 x – 4 
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; We have D10 + f 11 R1 = D1 = 0. Hence we get R1 = ///

1
 = 17.344 kN 

Once R1 is known, we can use equations of equilibrium to determine the remaining support reactions. Then 
drawing the bending moment diagram is left as a homework. 

Exercise 3: Analyse the portal frame shown in Fig. 11 and determine all the support reactions. Draw the BMD. 

   
DSI = 1. Choose HE (R1) as the redundant. The support reactions due to the applied loading and due to R1 = 1 
are shown above in Figs. 11 (a) and (b). The bending moments M and m can then be tabulated as shown below. 
The deflection calculation steps are given beneath the table.  

Portion Origin EI Limits (m) M m 
AB A EI 0 – 4 0 x 
BC B 2 EI 0 – 4 100 x/6 4 
CD D 2 EI 0 – 2 100 x/3 4 
DE E EI 0 – 4 0 x 
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D10 + f11	R1 = D1 = 0; \ R1 = –4.412 kN 

Once the redundant is found, all the support reactions can be calculated and the bending moment drawn. 
This part is left as an easy homework. 

Exercise 4: Analyse the frame shown in Fig. 12 and determine all the support reactions. EI is constant. 
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DSI = 1. Let us choose MA as the redundant R1. The primary structure with the applied load (Fig. 12a) and 
with R1 = 1 (Fig. 12b) are shown. The table below shows values of M and m due to these two load cases. The 
deflection calculations follow the tabulation. 

Portion Origin Limits (m) M m 
AB A 0 – 3 30 x 1/6 x – 1 
BC C 0 – 5 30 (0.6) x –1/6 (0.6) x 
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D10 + f11	R1 = D1 = 0; \ R1 = 76.154 kN m  
Once R1 (= MA) is found, the remaining support reactions are calculated using the equations of equilibrium. 
They are shown in Fig. 12 (c) below: 

 

C. Indeterminate Trusses 
A plane truss can be statically determinate or indeterminate. A statically indeterminate truss can be internally 
indeterminate, externally indeterminate, or both internally and externally indeterminate. The following figures 
are examples of these cases: 

 

  Figure 13 A statically determinate roof truss  
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Figure 14 (a) Statically determinate truss, (b) Internally indeterminate, and (c) Both internally and externally 
indeterminate truss 

A statically indeterminate truss can be analysed first by determining its DSI. Then the redundants (= DSI) are 
identified and they are removed to get the statically determinate primary structure. Then as in the case of 
beams and frames, trusses too can be analysed using: 

∆!" + ∑ 𝑓!#𝑅#$
#%& = ∆!, for i = 1 to n  

where Di0 is the displacement in the primary structure corresponding to the redundant Ri due to the applied 
loading, fij are the flexibility coefficients and Di is the final displacement of the indeterminate structure at i 
along Ri. The following example demonstrates the method. 
Exercise 5: Analyses and determine all the bar forces in the truss shown in Fig. 15 (a). The modulus of elas-
ticity E is the same for all the members. The horizontal and vertical bars are of area A = 400 mm2. The two 
diagonal braces have areas of 500 mm2. 

Here, the degree of static indeterminacy, DSI = 2. One internal (R1) and one external redundancy (R2). So we 
will consider the diagonal member AD and the horizontal reaction at B as the two redundants. Fig. 15 (b) 
shows the primary structure (the statically determinate one) with the two redundants. Fig. 15 (c) shows the 
primary structure subjected to the applied loading. All the bar forces are also shown in the figure. A unit tensile 
force applied along the bar AD (i.e. R1 = 1) and the corresponding bar forces are shown in Fig. 15 (d). Fig. 15 
(e) shows the case when HB = 1 is applied.  

 Figure 15 

    
All the bar forces are shown in the table given below. Members are also indicated by numbers. Note that AE/L 
is a constant except for the two diagonals. For these two, area = 5/4A and length = Ö2 L. 
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Member A L F0 F1 F2 F0 F1 L/AE F0 F2 L/AE F12 L/AE F1 F2 L/AE F22 L/AE 
1 AC A L 30 –1/Ö2 0 –30/Ö2 0 1/2 0 0 
2 CD A L 30 –1/Ö2 0 –30/Ö2 0 1/2 0 0 
3 DB A L 0 –1/Ö2 0 0 0 1/2 0 0 
4 AB A L 30 –1/Ö2 1 –30/Ö2 30 1/2 –1/Ö2 1 
5 BC A* L* –30Ö2 1 0 –48 0 1.131 0 0 
6 AD A* L* 0 1 0 0 0 1.131 0 0 

å –111.6396 30 4.26274 –0.7071 1 
AE/L ´ D10 = D20 = f11 = f12 = f22 = 

(A* = 5A/4; L* = Ö2L; L = 3 m; A = 400 mm2) 
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from which we get R1 = 24.032 kN (tension), and R2 = –13.0068 kN (from right to left). 

Indicating each of the members by 1 to 6 as shown in the first column of the above table, the bar force in 
member i is given by: Fi = Fi0 + Fi1 R1 + Fi2 R2. This follows from the principle of linear superposition. 

Thus, F1 = FAC = 30 –1/Ö2´24.032 + 0 = 13.01 kN = F2 = FCD (why?) 
F3 = –16.993 kN; F4 = 0; F5 = –18.394 kN; F6 = 24.032 kN. (verify all these) 

It is a good idea to solve the same problem with two other redundants (say member AB and HA or any other 
combination. 
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