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Mathematical
Model

» Assumptions and Interpreting the
results

« Approximations at each
of the above stages
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Analysis, Synthesis & Calibration

—> System g Output

Three types of associated problems:

Given the System and the Input: Find the Output— “Analysis”.
Direct problem; unique solution (for linear system).

Given the Input and the Output: Find the System
parameters—“Synthesis” (or Design). Inverse problem;
nonunique solution; Scope for optimisation.

Given the System and the Output: Find the Input—
“Calibration”. Inverse problem; ill-conditioned equations;
regularisation.
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Exact versus Solution of znginzzring
Approximate analysis proolzms

Methods “Exact” “Approximate"
Methods Methods

Exact methods— Analytical methods based on theory of

differential equations (or integral equations, integro-differential
equations, etc.)

Uses many assumptions to reduce the problem to a simple
one and solves this simple problem “exactly”

Mainly of academic interest only. Often acts as a bench mark
solution to test approximate methods

Approximate methods.— Numerical methods based on some
approximation theory — uses computer oriented numerical

methods to solve “exact” problem “approximately” (but with a
high accuracy); practically very useful.
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i Approximate Methods

Among various approximate methods the following are the
most popular ones:

¢ Finite Element Method (FEM)
¢ Finite Difference Method (FDM)
¢ Boundary Element Method (BEM)

The first two are classified under “domain” methods and the
third is classified as a “boundary” method




The Finite Element Method

Finite element method is one of the most popular and
versatile approximate methods used for solving real-life
engineering problems

Today it is used to analyse problems such as:
® Stress analysis
® Heat transfer
® Fluid flow

® |ubrication

® Electric and magnetic fields
* Piezoelectricity

®* and many many others
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Problems which were intractable are now being solved
routinely

Finite element procedures are used in the design of:

® Buildings

® Electric motors

® Heat engines

® Ships

® Aircrafts/spacecrafts

Manufacturing companies and big design offices have
one or more large in-house finite element programs
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A Brief History of FEM

1906 — Lattice analogy to solve continuum problems in which
the continuum was replaced by a regular mesh of elastic bars

1941 — Applications of lattice analogy in plane elasticity and
plate bending problems

1941 — Courant suggested piecewise polynomial
approximations over triangular subregions as a way to get
approximate numerical solutions

Early to Mid 1950’s — Engineers in aeronautical industry made
remarkable progress; e.g. Turner (US) devised three-noded
triangular element to model the wing skin, Taig did similar work
iIn UK, Argyris in Germany included FE concepts in a series of
papers on matrix methods

1956 — Turner, Clough, Martin & Topp — Classic paper
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1960 — Clough coined the name “Finite Element Method”

1963 — FEM acquired respectability in academia when it was
recognised as a form of Rayleigh-Ritz method

1965 — Papers about heat conduction and seepage flow
1966 — Isoparametric elements
1967 —The first text book on FE by Zienkiewicz and Cheung

n 1961 — 10 papers about FEM were published
n 1966 — 134 papers;
n 1971 — 844 papers
By 1986 — there were more than 20,000 papers!

In 1995 — Mackerle estimated that about 3800 papers on
FEM were being published annually, and that the cumulative
total of FEM publications amounted to some 380 books, 400
conference proceedings and 56,000 papers, and 310
general purpose FE computer programs!
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A machine component Finite element discretisation
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The displacements and stresses caused by the pressure
p are required

« The domain is discretised into finite elements which are
connected to each other only at nodes

« Each element is of simpler geometry — hence easier to
analyse than the actual structure

« A complicated solution is approximated by piece-wise
continuous simple solutions

 Total number of degrees of freedom (d.o.f) = d n
(d = number of d.o.f. per node; n = number of nodes)
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 Algebraic equations that describe the finite element
model are generated and solved to determine the
d.o.f.

« Sawing the continuum into pieces and then pinning

the pieces together — gaps and overlaps at inter-
element boundaries — “inter-element compatibility”

« However, between elements there may be jumps in
the x and y derivatives of ¢
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Piece-wise continuous simple solutions to approximate the
actual field of ¢
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Books:

« R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Wiit,
Concepts and Applications of Finite Element Analysis,
John Wiley, New York, 2002. (An excellent book to both
beginners and users of FEM, very well written)

- J.K. Bathe, Finite Element Procedures in Engineering
Analysis, Prentice Hall of India, New Delhi, 1992. (A very
good reference book especially for problems related to
structural dynamics. An exhaustive book, which is a bit
hard to read at places where even the notations are

complicated)
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« J.K. Bathe and E.L. Wilson, Numerical Methods In
Finite Element Analysis, Prentice Hall India, New Delhi,
1987. (A much smaller book in comparison to the
above; contains almost all materials related to
dynamics as in the above)

« 0O.C. Zienkiewicz, and R.L. Taylor, The Finite Element
Method, Volume | & || McGraw-Hill, London, 1989. (An
excellent reference book. Volume Il covers advanced
topics such as nonlinear problems)

« 0O.C. Zienkiewicz, and K. Morgan, Finite Elements and
Approximation, John Wiley, New York, 1983. (A good
book on weighted residual approach)
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« B. Szabo and |. Babuska, Finite Element Analysis,
John Wiley, New York, 1991. (For a good taste in more
mathematical treatment of FEM)

« S.S. Rao, The Finite Element Method in Engineering,
Pergamon Press, New York, 1982.

« Shames and C.L. Dym, Energy and Finite Element
Methods in Structural Mechanics, New Age Intrnl-
Wiley Eastern, New Delhi, 1991.

Web Resources:
Plenty of information available on web.

See for example:
http://homepage.usask.ca/~1ym435 1/finite/fe_resources/
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The Finite Element Method

Weighted residual approach

Weighted residual method: The residue is obtained by
replacing the unknown variable(s) in the governing differential
equation of the problem by an approximate solution.

The residue is “weighted” and then minimised to arrive at an
approximate solution — more versatile as this method can be
used to solve any problem whose governing differential
equation is known.

Variational method: based on natural variational principles.
The solution is obtained by minimising the functional. The first
finite element applications were based on this approach.
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The Weighted Residual Method

Let the governing differential equation be:

L£(u)=binV + associated boundary conditions

e.g:
L()= —()+—()+()
dx*
Or 82 82
()=§( )+—() [2D Laplace’s operator

Let U be an approxmate solution: i = ZO@ 1)
=1

where o;— undetermined parameters

and ¢,— linearly independent functions taken from a
complete sequence of functions such as ¢,(x), ¢,(x), ..., @ (x)
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Then, the “residual” or “error” function Is:

R=r@ - b#0 InV

In the WRM'’s, these errors are forced to zero in certain
average sense.

Some of the common WRM's are:
» Collocation method (point collocation)
» Collocation by subregion

e Galerkin method
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The weighted residual statement is:

ijdvzo (A)

where w= gy, + v, +--+ v, , is called the weighing
function.

In the Galerkin method, y; are chosen as ¢. itself.

Weak Formulations

(A) Leads to: j w{L(@) —b) dV =0 =)
%
Integrating (B) by parts, we get:

jw (L(6)—b) dV = j{Ll(w)z,z(ﬁ)—wb} dV+J‘---dS 0
|% |4 S
The above Is said to be in the weak form.
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E.g— Let = N0 <x< 1
dx’
The weighted residual statement is:
which leads to:
j 4 dwdx+j (u+x)wdx+wdu =
0 dx dx dx|,

The above is Iin the “weak form’.
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The continuity requirements of the weak form are less
rigid.

The Finite Element formulations are based on the weak
form.

The main advantage of the weighted residual formulation
IS that if the governing differential equation of the problem
IS known, one can proceed to obtain an approximate
solution.

The weak form can be integrated by parts again to arrive
at the inverse form.

The Boundary Element Method (BEM) stems from the
iInverse form.
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Figure Cantilever beam subject to loading

Example:
Beam problem

s

Differential equation
approach:

Governing differential
equation and associated
boundary conditions are:

d*w dw d*w d>w
_— P—

geometric b.c’s natural b.c’s

(essential b.c’s) (non-essential b.c’s)
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Variational Approach

(Principle of minimum potential energy)
The potential energy of the cantilever beam is given by:
[ i [
_ Bl "y 2 _
IT, = j 5 ET(wW")"dx jq(x)w(x)dx
0 0

The principle of stationary potential energy:

“Among all the admissible configurations of a conservative
system, those that satisty the equations of equilibrium
make the potential energy stationary w.r.t. small
admissible variations of displacement”

Applying a small variation to w(x) in the above, we get:

[ [
oll, :IOEIW ow dx—joqé'wdx:O
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Integrating the first term on the right by parts, we get:

A1, = EIw"Sw|, — EIw" 6|, +
[ [
J:) EW"".ow.dx — .[o g.ow.dx =0

= 1, = Elw" 6| — Elw" 6w,

1
- IO (EIw""—q)ow.dx =0

Since ow = ow’ = 0 at x =0, the above leads to the following:
EIw” = g(x) [Euler-Bernaulli equation

and EIw”(x=10)=0 [Natural boundary conditions
EIw”x=D)=0 [ 7 ’ ”
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‘ Given physical problem 4 Finite element discretisation

FE analysis

Discretise the continuum into many subregions called finite
elements of arbitrary size, shape and orientation

Each element is assumed to be connected to the neighbouring
elements only at a finite number of discrete points called
nodes

The displacements at the nodes are assumed as the basic
unknowns of the problem

Thus, the number of degrees of freedom of the problem is
reduced from infinity to a finite number
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Concept of Interpolation

Now, let us assume (for the time being)
that by some means we know the nodal
degrees of freedom (say, displacements)
of any one typical finite element;

Can we then calculate the displacement

field within the element? —
One typical element
u(x,y) ,
:[N(x,y)]{l/t } ru ]
v(Z,y) |

Or {u(x,y)} N, 0 N, 0 N, 0 ||u

— 9 >

v(z,y) 0 N O N, 0 Njlv,

u

Ni(x,y) are called the interpolation functions :
R2Y

or shape functions
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u(x) =a+ bx
@x=0,u=u,
@x=Lu=u,
u(x) =1 -x/10) u,
+ (x/1) u,
=N, u; + N, u,

Thus N,, N, are one-dimensional interpolation functions
given by:

N,(x)=(0—x/1) and N,(x) = x/I
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Example:2
Triangular plane element

u(x, y) can be written as:

ux,y)=a+bx+cy a
= [1 x y]l<b;
= [x]{a} ¢

. J
\ — T )

a, b, c are determined by solving iz L Xy |la

the following system of equations:u, ;=|1 x, y, 3b;
us | |1 x yile

Or in matrix notation: {u¢} = [A]{a}
Lou(x, y) = [x] [AT {we} = [N] {u¢}; . [N]=[x] [A]"
And  u(x,y)=N,u,+ N,u,+ N; u,
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N,, N, and N, are linear interpolation polynomials in x and y,
which are given by:

|
N, =—/(a, +bx+c, =1, 2,
2A( y), i 3
where a; = x; y, — x; Ji;
bi:yj_yk
C; =X, —X;

and i,j and k are to be taken in a cyclic order. For example,
when i =1,jand k should be 2 and 3 respectively.

And
L x

A=|l x, y,| =2 x Area of the triangle
I x v,
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Figure: Interpolation polynomial N, for triangular element

Thus, we have seen now that if the nodal displacement
vector is known, we can calculate the displacement at any
point within any element.

That is, we can determine the displacement field once we
know the nodal displacements.
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The Strain-Displacement Relations

Once we know the displacement at any point, we can get
the strain vector at the point by invoking the strain-
displacement relations as given by:

“i T3 (Bx]- ox. )

l

For a two-dimensional elasticity problem, the components
of the strain tensor are given by:
_ du ov ou OJv

Eom——t B =y =
Y oox 0 9y £ dy Ox
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In matrix notation: _i 0 _
E, 0x
1€y (= 0 i {u}
dy ||v
Y xy d d
| dy Ox_
Or 1€} =[L] {u}

Since {u} = [N] {u},
we have, {¢&} =[L] {u} =[L] [N] {u}
Or {€} =[B] {u}

where [B] is called the strain-displacement matrix
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The Constitutive Relations

The stress-strain relations are given in matrix form as follows:
{o} =[D] {&
[D] is called the constitutive matrix.

For plane stress problems:

- R — -

O, 1 v 0 E,
E

10, ¢ = v 1 0) SE, ¢

\Txy) | 5( _V)_ yxy

where E — Young's modulus; v— Poisson’s ratio
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For the case of a three dimensional (linearly elastic
Isotropic) problem, the stress strain relations are given by:

If there is an initial stress field o (x) and an initial strain field
£,(X), the corresponding constitutive relationship is:

{o}=[D]({e}—{¢g,})+{o,]

To recapitulate, we have the following relations:
{u} = [N] {uc} — displacements within any element
{e} = [B] {uf} — strain within any element
{o} =[D] |B] {u¢} - stress within any element
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Now, let us address the earlier question —

How do we get the nodal displacements in the first place?

Principle of Virtual Work

Consider a virtual displacement field denoted by ou. The
corresponding nodal displacement vector is o u¢ and,

{ou} =[N]{ou}

The virtual strain field produced by the above displacement
field is denoted by os and is related to the virtual nodal
displacement vector by:

{og} =[B] {ou‘}
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The principle of virtual work states that when a body is in
equilibrium under the action of certain external loads, the
external virtual work done by these loads over the virtual
displacement field is equal to the internal virtual work done
by the stresses over the virtual strain field.

Mathematically, the principle of virtual work can be written as:

[16e) (a)av =[{Su) (b)aV +[{Su) { p}dV

(6w} [IBY'[DIIBIAV
= {6u) [INT'{b}aV +{Su} [[NT'{p}dV

Or V S

[KI{U} = {R}

National Institute of Technology Calicut



Thus, [K][{U} = {R}

where nElems nElems

[K]= ) [kl {R}= ) {r‘]
e=l e=l

[k1= [ [BI'[DI[B1dV;

(r} = [INT'{B}aV +[[NT { p}dV
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For the Triangular Element
The strain displacement matrix is given by,

7%

ck N 0O N, 0 N, O

[B]:Oi{l ) }
dy|l|0O N O N, 0 N,
Jd Jd

Jdy Jdx|

b, 0 b, 0 b, O y

=10 ¢ 0 ¢, 0 c ‘
¢ b ¢, b, ¢ by X

It can be noticed that [5] Is a matrix of constant elements.
Hence a constant strain field is obtained.
(hence, the name - constant strain triangle).

National Institute of Technology Calicut



The element stress field is given by:
{o} =[D] [B] {u‘}

where the elements of the 3 x 3 constitutive matrix [D] are
obtained from Eq. 2a or 2b depending on whether the
problem is a plane stress one or a plane strain one.

The element stiffness matrix can be obtained as:

[k¢] IB DB dV, = BT DB x area of triangle
x thickness of element

e

Explicit expression for k¢ are available in standard text
books.
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Assembly of Element Matrices

Element stiffness matrix and load vector are calculated
for each element and then assembled to get the global
stiffness matrix and global load vector.

nElems nElems

[K]1= Y [k {R}= ) {r‘}

e=1 e=1

Let us consider an example:
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O @ ©

q; 45 qs Nodal forces
Uy U, u;, | Nodal displacements
(1) [ .1 1,0 [,2)] [..2 2 7(,,2]
9 kg kyp ||% 9 kip ki ||W
e O I b
| kl kl | 2 k2 k2 2
4> ™21 22 | |(Un 42 ™21 22 |(Ug

Compatibility: u,'= u;; U,! = u? = u,; Uy’ = Uy

Equiliorium:  ¢q,'= ¢;; 90’ + q* = qy; 9> = q;




4 2

[ 1
q; kit ki 0 |l

192 ¢ =| k2 §k52+k121 k122§4”2>

: 2 D
qs3 0 ki, kzzi Us

. J

This is of the form:
[KI{U} = {R}
[K] is singular. Suppose u; = 0.

Discarding the third row and column of K, we get:

— — - N

STRRR.ST: {L‘I}:fll>
_K21 Kzz_ Us q- Find {ul uz}T
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Concept of Reduced Stiffness Matrix

The stiffness matrix, and displacement and load vectors can
be partitioned as follows:

Kﬁ Kﬁ, U
K,,f K _||U

. 7 J . ! J

R
J Rf

The first equation reads as:
K Up + Ky Ul = R;

Most often, U .= 0. (We will consider the case of non-zero U,
later).

Then, K¢ U; = Re.

K, is called the reduced stiffness matrix
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Only the reduced stiffness matrix is assembled

The set of linear algebraic equations [K.] {U,} = {R;} IS
solved to get {U,}

Once U, is known, the nodal displacement vector u® for each
element can be extracted; the displacement, strain and
stress fields within the element are then calculated using the
earlier relations:

{up =[N] {u°}
(e} =[B] {u}
{o} =[D][B] {u°}

The reactions are determined from each of the element
contributions as:

(e} = k] {us}
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Recapitulation

Steps in FE Analysis:

Discretise the domain into finite elements

Each element is connected to neighbouring ones only at nodes

The nodal displacements are the basic unknowns of the
problem

For each element determine the element stiffness matrix using
the following relation:

[k°] = j [BI” [DI[BldV
vV

and the element load vector by:

(r}=[INT" {B}aV +[[NT"{ p}adV
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Assemble the element stiffness and load matrices to get the
global stiffness matrix and global load array as:

nElems nElems

[K1= Y [k {R}= D {r}

In the above, one need assemble only the reduced stiffness
maitrix (corresponding to the free degrees of freedom alone)
and the corresponding load vector to obtain the system of
equations:

[Kﬁ]{ Uf} - {Rf}
Solve the above using Gauss elimination to determine the
unknown nodal displacements
Extract element nodal displacements

Calculate the displacements, strains and/or stresses within
any element as required

National Institute of Technology Calicut



Programming Aspects of

Finite Element Method

Elements of a simple FE computer code are presented below
— “pseudo code” is used

Input requirements:
// Input no. of elements, no. of nodes, material properties

read nElems, nNodes, E, poissonRatio
// Input nodal coordinate data
for i=1, nNodes
Eread K, X[K], Y[K]
// Input element connectivity and thickness data
for i=1, nElems
Eread kK, nod(1,k), nod(2,k), nod(3,k), thick[k]
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For the purpose of assembly, the following two matrices are
usually employed:

Element connectivity array: Array containing the node
numbers of each element

Destination array: Array containing the degree-of-freedom
numbers at each node

Consider the following plane stress problem:

Example —
Plane stress problem
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Nodal connectivity array:

nod =

W WD N
S W =
A D W

W o =

Destination array is initialized
to zero; the boundary restraint
list is then directly read into it

toget: F 10 0 O}
estn =

01 0 0 1

It is modified subsequently to:

00246}

destn =
L 0O 3 5 0
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The global stiffness matrix will be of size 6 x 6

[K]=

S CH CH CE ¥ k'r—a
S L T ST SR
S T
S TR - T - T - S T B
< = = = = = W
s T o TR o TR glo\

X
X
{R}:<x>
X
X
X

AN L A W N =
N Lt B W N =
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The element stiffness matrix is also of size 6 x 6

(k1=

We need to post the elements of the element stiffness matrix
into the global stiffness matrix. The k¢ element gets posted
to the location K, which is decided by the nodal d.o.f.
numbering of each element as follows:
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Element 1 Typical element e

Local dof 1 2 3 4 5 5
Global dof

Elem 2 0 0 6 0 2 3
Elem 4 2 3 6 0 4 5
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(Input continued):
// Input boundary restraint list
read nDispRestrains
for i=1, nDispRestrains
read k, destn(1,k), destn(2,k)

// generation of destination array
neq=0
for (j=1; j<=nNodes; ++|)
fori=1, 2
— If (destn (i, j) = 0)
neq ++;
destn (i, j) = neq;
- else
destn (i, j) = 0;
—endif
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// Assembly of element matrices
for n=1, nElems
getElementStiffness(n); // call subprogram

dof = 0;
for =1, 3
for | =1, 2
dof = dof + 1

node = nod(i, n)
kk[dof] = destn (j, node)
fori=1,6

—if (kk []] > 0) then

k = Kk [i]

gLoad [K] += elemLoad [i]

for j=1, 6
— if (kk [j] > 0) then
| = Kk [j]
gStiff (k, 1) += elemStiff (i, j)
— endif
— endif
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Prescribed Nonzero D.O.F.

We have, K,;U;+ K U = R;

Ke Up = R = K Up

Specifically, as each element is assembled, calculate loads
r = [k°] {d} produced by prescribed d.o.f. {d};

Subtract r from element loads {r¢} and assemble the net
loads
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Sparsity of [K | — Use of Proper Node Numbering

* [K]is a sparse matrix (i.e., most of k; are zeros)

* The no. of nonzero elements of [K] and their magnitudes
are not affected by node numbering — only the
arrangement of the nonzero k;;’s is affected

* k; Is nonzero if and only if the dof's i and ;j are both
present in at least one element

« Semi-bandwidth 5 (bandwidth is 26 — 1)

« Some zeros might appear within the bandwidth also; but
only zeros appear outside

« Sky-line storage method
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To reduce the bandwidth b, number the nodes along the
shorter dimension of the structure:

« Automatic node renumbering programs
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Stress Computation

Either use {o} = [D] { €}
oruse:  {o}=[DI({e}-{¢,})+{o,}

Since [B] involves differentiation, the stresses computed are
less accurate in comparison with the displacement

In lower order elements, stresses are most accurate at the
centroid of the element and least accurate at the corners
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In higher order elements, there are points at which
stresses are obtained with maximum accuracy (optimal
points)

Stresses at other locations are obtained by extrapolation
from these points

At nodes, it is better to calculate the stresses from various
adjoining elements meeting at the node than from one
element

For isoparametric elements, stresses are best calculated
at the guassian points
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Support Reactions

Either store K.;and K., initially itself and use them to get R,
A particular reaction R;can be obtained as:

R, = ZKU]

— K.U
Z{Z 77 m —number of elements joined
at the node
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Element Shapes, Connection, Grading

Best to use regular-shaped elements
Do not distort too much

Poor Connections




Transition from Coarse to Fine

(a) f coarse mesh (b) f coarse mesh

fine mesh fine mesh
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Mesh for a Circular Domain






