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Analysis, Synthesis & CalibrationAnalysis, Synthesis & Calibration

Three types of associated problems:

Given the System and the Input: Find the Output— “Analysis”. 

Direct problem; unique solution (for linear system).

Given the Input and the Output: Find the System 

parameters—“Synthesis” (or Design).  Inverse problem; 
nonunique solution; Scope for optimisation.

Given the System and the Output: Find the Input—
“Calibration”.  Inverse problem; ill-conditioned equations; 

regularisation.
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Exact methods:– Analytical methods based on theory of 
differential equations (or integral equations, integro-differential 
equations, etc.)

Uses many assumptions to reduce the problem to a simple 
one and solves this simple problem “exactly”

Mainly of academic interest only. Often acts as a bench mark 
solution to test approximate methods
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one and solves this simple problem “exactly”

Mainly of academic interest only. Often acts as a bench mark 
solution to test approximate methods
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Approximate methods:– Numerical methods based on some 
approximation theory – uses computer oriented numerical 
methods to solve “exact” problem “approximately” (but with a 
high accuracy); practically very useful.
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Among various approximate methods the following are the 
most popular ones:

Finite Element Method (FEM)

Finite Difference Method (FDM)

Boundary Element Method (BEM)

The first two are classified under “domain” methods and the 
third is classified as a “boundary” method

Among various approximate methods the following are the 
most popular ones:

Finite Element Method (FEM)

Finite Difference Method (FDM)

Boundary Element Method (BEM)

The first two are classified under “domain” methods and the 
third is classified as a “boundary” method

 

(a) (b) 

Figure (a) Finite difference, (b) Finite element and (c) Boundary element 
discretisations of a machine component. 

(c) 

Approximate MethodsApproximate Methods
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Finite element method is one of the most popular and 
versatile approximate methods used for solving real-life 

engineering problems

Today it is used to analyse problems such as:

Finite element method is one of the most popular and Finite element method is one of the most popular and 

versatile versatile approximate methodsapproximate methods used for solving realused for solving real--life life 

engineering problemsengineering problems

Today it is used to Today it is used to analyseanalyse problems such as:problems such as:

The Finite Element MethodThe Finite Element MethodThe Finite Element Method

• Stress analysis

• Heat transfer

• Fluid flow

• Lubrication

• Electric and magnetic fields

• Piezoelectricity

• and many many others
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¤ Problems which were intractable are now being solved 

routinely

¤ Finite element procedures are used in the design of:

¤¤ Problems which were intractable are now being solved Problems which were intractable are now being solved 

routinelyroutinely

¤¤ Finite element procedures are used in the design of:Finite element procedures are used in the design of:

¤ Manufacturing companies and big design offices have 

one or more large in-house finite element programs

¤¤ Manufacturing companies and big design offices have Manufacturing companies and big design offices have 

one or more large inone or more large in--house finite element programshouse finite element programs

• Buildings

• Electric motors

• Heat engines

• Ships

• Aircrafts/spacecrafts
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•• Aircrafts/spacecraftsAircrafts/spacecrafts
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A Brief History of FEMA Brief History of FEMA Brief History of FEM

1906 – Lattice analogy to solve continuum problems in which 
the continuum was replaced by a regular  mesh of elastic bars

1941 – Applications of lattice analogy in plane elasticity and 

plate bending problems

1941 – Courant suggested piecewise polynomial 
approximations over triangular subregions as a way to get 

approximate numerical solutions

Early to Mid 1950’s  – Engineers in aeronautical industry made 
remarkable progress; e.g. Turner (US) devised three-noded 

triangular element to model the wing skin, Taig did similar work 
in UK, Argyris in Germany included FE concepts in a series of 

papers on matrix methods

1956 – Turner, Clough, Martin & Topp – Classic paper
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approximations over triangular subregions as a way to get approximations over triangular subregions as a way to get 

approximate numerical solutionsapproximate numerical solutions

Early to Mid 1950’s  Early to Mid 1950’s  –– Engineers in aeronautical industry made Engineers in aeronautical industry made 
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in UK, in UK, ArgyrisArgyris in Germany included FE concepts in a series of in Germany included FE concepts in a series of 

papers on matrix methodspapers on matrix methods

1956 1956 –– Turner, Clough, Martin & Topp Turner, Clough, Martin & Topp –– Classic paperClassic paper
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1960 – Clough coined the name “Finite Element Method”

1963 – FEM acquired respectability in academia when it was 
recognised as a form of Rayleigh-Ritz method

1965 – Papers about heat conduction and seepage flow

1966 – Isoparametric elements 

1967 –The first text book on FE by Zienkiewicz and Cheung

In 1961 – 10 papers about FEM were published

In 1966 – 134 papers; 

In 1971 – 844 papers

By 1986 – there were more than 20,000 papers!

In 1995 – Mackerle estimated that about 3800 papers on 
FEM were being published annually, and that the cumulative 
total of FEM publications amounted to some 380 books, 400 
conference proceedings and 56,000 papers, and 310 
general purpose FE computer programs!

1960 1960 –– Clough coined the name “Finite Element Method”Clough coined the name “Finite Element Method”
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recognisedrecognised as a form of Rayleighas a form of Rayleigh--Ritz methodRitz method

1965 1965 –– Papers about heat conduction and seepage flowPapers about heat conduction and seepage flow

1966 1966 –– Isoparametric elements Isoparametric elements 

1967 1967 ––The first text book on FE by The first text book on FE by ZienkiewiczZienkiewicz and Cheungand Cheung

In 1961 In 1961 –– 10 papers about FEM were published10 papers about FEM were published

In 1966 In 1966 –– 134 papers; 134 papers; 

In 1971 In 1971 –– 844 papers844 papers

By 1986 By 1986 –– there were more than 20,000 papers!there were more than 20,000 papers!

In 1995 In 1995 –– MackerleMackerle estimated that about 3800 papers on estimated that about 3800 papers on 
FEM were being published annually, and that the cumulative FEM were being published annually, and that the cumulative 
total of FEM publications amounted to some 380 books, 400 total of FEM publications amounted to some 380 books, 400 
conference proceedings and 56,000 papers, and 310 conference proceedings and 56,000 papers, and 310 
general purpose FE computer programs!general purpose FE computer programs!
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The displacements and stresses caused by the pressure 

p are required

The displacements and stresses caused by the pressure The displacements and stresses caused by the pressure 

pp are requiredare required

• The domain is discretised into finite elements which are 

connected to each other only at nodes

• Each element is of simpler geometry – hence easier to 

analyse than the actual structure

• A complicated solution is approximated by piece-wise 

continuous simple solutions

• Total number of degrees of freedom (d.o.f) = d n
(d = number of d.o.f. per node; n = number of nodes)

•• The domain is discretised into finite elements which are The domain is discretised into finite elements which are 

connected to each other only at nodesconnected to each other only at nodes

•• Each element is of simpler geometry Each element is of simpler geometry –– hence easier to hence easier to 

analyseanalyse than the actual structurethan the actual structure

•• A complicated solution is approximated by pieceA complicated solution is approximated by piece--wise wise 

continuous simple solutionscontinuous simple solutions

•• Total number of degrees of freedom (d.o.f) = Total number of degrees of freedom (d.o.f) = d nd n

((d d = number of d.o.f. per node; = number of d.o.f. per node; nn = number of nodes)= number of nodes)
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• Algebraic equations that describe the finite element 
model are generated and solved to determine the 

d.o.f.

• Sawing the continuum into pieces and then pinning 

the pieces together →→→→ gaps and overlaps at inter-

element boundaries – “inter-element compatibility”

• However, between elements there may be jumps in 

the x and y derivatives of φ

•• Algebraic equations that describe the finite element Algebraic equations that describe the finite element 

model are generated and solved to determine the model are generated and solved to determine the 

d.o.f.d.o.f.

•• Sawing the continuum into pieces and then pinning Sawing the continuum into pieces and then pinning 

the pieces together the pieces together →→→→→→→→ gaps and overlaps at intergaps and overlaps at inter--

element boundaries element boundaries –– “inter“inter--element compatibility”element compatibility”

•• However, between elements there may be jumps in However, between elements there may be jumps in 

the the x x and and yy derivatives of derivatives of φφ
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Piece-wise continuous simple solutions to approximate the 

actual field of φ
PiecePiece--wise continuous simple solutions to approximate the wise continuous simple solutions to approximate the 

actual field of actual field of φφ
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Some Useful References

Books:

• R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt, 
Concepts and Applications of Finite Element Analysis, 

John Wiley, New York, 2002. (An excellent book to both 

beginners and users of FEM, very well written)

• J.K. Bathe, Finite Element Procedures in Engineering 
Analysis, Prentice Hall of India, New Delhi, 1992. (A very 

good reference book especially for problems related to 
structural dynamics. An exhaustive book, which is a bit 

hard to read at places where even the notations are 

complicated)
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ConceptConceptss and Applicationand Applicationss of Finite Element Analysisof Finite Element Analysis, , 

John Wiley, New York, John Wiley, New York, 20022002.. (An excellent book to both (An excellent book to both 

beginners and users of FEM, very well written)beginners and users of FEM, very well written)

•• J.K. Bathe, J.K. Bathe, Finite Element Procedures in Engineering Finite Element Procedures in Engineering 
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good reference book especially for problems related to good reference book especially for problems related to 

structural dynamics. An exhaustive book, which is a bit structural dynamics. An exhaustive book, which is a bit 

hard to read at places where even the notations are hard to read at places where even the notations are 

complicated)complicated)
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• J.K. Bathe and E.L. Wilson, Numerical Methods in 
Finite Element Analysis, Prentice Hall India, New Delhi, 

1987. (A much smaller book in comparison to the 
above; contains almost all materials related to 

dynamics as in the above)

• O.C. Zienkiewicz, and R.L. Taylor, The Finite Element 

Method, Volume I & II McGraw-Hill, London, 1989. (An 
excellent reference book. Volume II covers advanced 

topics such as nonlinear problems)

• O.C. Zienkiewicz, and K. Morgan, Finite Elements and 

Approximation, John Wiley, New York, 1983. (A good 
book on weighted residual approach)

•• J.K. Bathe and E.L. Wilson, J.K. Bathe and E.L. Wilson, Numerical Methods in Numerical Methods in 

Finite Element AnalysisFinite Element Analysis, Prentice Hall India, New Delhi, , Prentice Hall India, New Delhi, 

1987.1987. (A much smaller book in comparison to the (A much smaller book in comparison to the 

above; contains almost all materials related to above; contains almost all materials related to 

dynamics as in the above)dynamics as in the above)

•• O.C. O.C. ZienkiewiczZienkiewicz, and R.L. Taylor, , and R.L. Taylor, The Finite Element The Finite Element 

MethodMethod, Volume I & II McGraw, Volume I & II McGraw--Hill, London, 1989.Hill, London, 1989. (An (An 

excellent reference book. Volume II covers advanced excellent reference book. Volume II covers advanced 

topics such as nonlinear problems)topics such as nonlinear problems)

•• O.C. O.C. ZienkiewiczZienkiewicz, and K. Morgan, , and K. Morgan, Finite Elements and Finite Elements and 

ApproximationApproximation, John Wiley, New York, 1983., John Wiley, New York, 1983. (A good (A good 

book on weighted residual approach)book on weighted residual approach)
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• B. Szabo and I. Babuska, Finite Element Analysis, 

John Wiley, New York, 1991. (For a good taste in more 
mathematical treatment of FEM)

• S.S. Rao, The Finite Element Method in Engineering, 
Pergamon Press, New York, 1982.

• Shames and C.L. Dym, Energy and Finite Element 
Methods in Structural Mechanics, New Age Intrnl-

Wiley Eastern, New Delhi, 1991.

Web Resources:

Plenty of information available on web.

See for example: 
http://homepage.usask.ca/~ijm451/finite/fe_resources/
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Wiley Eastern, New Delhi, 1991.Wiley Eastern, New Delhi, 1991.

Web Resources:Web Resources:

Plenty of information available on web.Plenty of information available on web.
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Weighted residual method: The residue is obtained by 

replacing the unknown variable(s) in the governing differential 
equation of the problem by an approximate solution. 

The residue is “weighted” and then minimised to arrive at an 
approximate solution – more versatile as this method can be 

used to solve any problem whose governing differential 
equation is known.

Variational method: based on natural variational principles. 

The solution is obtained by minimising the functional. The first 

finite element applications were based on this approach.

Weighted residual method:Weighted residual method: The residue is obtained by The residue is obtained by 

replacing the unknown variable(s) in the governing differential replacing the unknown variable(s) in the governing differential 

equation of the problem by an approximate solution. equation of the problem by an approximate solution. 

The residue is “weighted” and then The residue is “weighted” and then minimisedminimised to arrive at an to arrive at an 

approximate solution approximate solution –– more versatile as this method can be more versatile as this method can be 

used to solve any problem whose governing differential used to solve any problem whose governing differential 

equation is known.equation is known.

Variational method:Variational method: based on natural variational principles. based on natural variational principles. 

The solution is obtained by The solution is obtained by minimisingminimising the functional. the functional. TheThe first first 

finite element applications were based on this approach.finite element applications were based on this approach.

The Finite Element MethodThe Finite Element MethodThe Finite Element Method Variational approachVariational approachVariational approach

Weighted residual approachWeighted residual approachWeighted residual approach
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Or
[2D Laplace’s operator

Let û be an approximate solution: 

where αi – undetermined parameters

and φi – linearly independent functions taken from a 

complete sequence of functions such as φ1(x), φ2(x), … , φn(x)

OrOr

[2D Laplace[2D Laplace’’s operators operator

Let Let ûû be an approximate solution: be an approximate solution: 

where where ααii –– undetermined parametersundetermined parameters

and and φφii –– linearly independent functions taken from a linearly independent functions taken from a 

complete sequence of functions such as complete sequence of functions such as φφ11((xx), ), φφ22((xx), ), …… , , φφnn((xx))

The Weighted Residual Method

Let the governing differential equation be:

L (u) = b in V +  associated boundary conditions

e.g:  

The Weighted Residual MethodThe Weighted Residual Method

Let the governing differential equation be:Let the governing differential equation be:
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Then, the “residual” or “error” function is:

R ≡ L (û) – b ≠ 0  in V

In the WRM’s, these errors are forced to zero in certain 

average sense.

Some of the common WRM’s are:

• Collocation method (point collocation)

• Collocation by subregion

• Galerkin method

Then, the Then, the ““residualresidual”” or or ““errorerror”” function is:function is:

R R ≡≡ LL ((ûû) ) –– b b ≠≠ 0  0  inin VV

In the WRM’s, these errors are forced to zero in certain In the WRM’s, these errors are forced to zero in certain 

average sense.average sense.

Some of the common WRM’s are:Some of the common WRM’s are:

•• Collocation method (point collocation)Collocation method (point collocation)

•• Collocation by subregionCollocation by subregion

•• Galerkin methodGalerkin method
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0=∫
V

dVwR 0=∫
V

dVwR

The weighted residual statement is:The weighted residual statement is:The weighted residual statement is:

where , is called the weighing 

function. 

In the Galerkin method, ψi are chosen as φi itself.

Weak Formulations

(A) Leads to: (B)

Integrating (B) by parts, we get:

where where , is called the weighing , is called the weighing 

function. function. 

In the Galerkin method, In the Galerkin method, ψψii are chosen as are chosen as φφii itself.itself.

Weak FormulationsWeak Formulations

(A)(A) Leads to: Leads to: (B)(B)

Integrating (B) by parts, we get:Integrating (B) by parts, we get:
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The above is said to be in the weak form.The above is said to be in theThe above is said to be in the weak formweak form..
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E.g:– Let in 0 < x < 1

The weighted residual statement is:

E.g:E.g:–– Let Let in 0 <in 0 < xx < 1< 1

The weighted residual statement is:The weighted residual statement is:
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which leads to:which leads to:which leads to:

The above is in the “weak form”.The above is in the “The above is in the “weak formweak form”.”.
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• The continuity requirements of the weak form are less 

rigid.

• The Finite Element formulations are based on the weak 

form.

• The main advantage of the weighted residual formulation 

is that if the governing differential equation of the problem 

is known, one can proceed to obtain an approximate 

solution.

• The weak form can be integrated by parts again to arrive 

at the inverse form. 

• The Boundary Element Method (BEM) stems from the 

inverse form.

•• The continuity requirements of the weak form are less The continuity requirements of the weak form are less 

rigid.rigid.

•• The Finite Element formulations are based on the weak The Finite Element formulations are based on the weak 

form.form.

•• The main advantage of the weighted residual formulation The main advantage of the weighted residual formulation 

is that if the governing differential equation of the problem is that if the governing differential equation of the problem 

is known, one can proceed to obtain an approximate is known, one can proceed to obtain an approximate 

solution.solution.

•• The weak form can be integrated by parts again to arrive The weak form can be integrated by parts again to arrive 

at the inverse form. at the inverse form. 

•• The Boundary Element Method (BEM) stems from the The Boundary Element Method (BEM) stems from the 

inverse form.inverse form.



National Institute of Technology Calicut 

Example:
Beam problem
Example:
Beam problem
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Differential equation 

approach:

Governing differential 
equation and associated 

boundary conditions are:

Differential equation Differential equation 

approach:approach:

Governing differential 
equation and associated 

boundary conditions are:

geometric b.c’s

(essential b.c’s)

geometric b.c’s

(essential b.c’s)

natural b.c’s

(non-essential b.c’s)

natural b.c’s

(non-essential b.c’s)
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Variational Approach
(Principle of minimum potential energy)

Variational ApproachVariational Approach
(Principle of minimum potential energy)(Principle of minimum potential energy)

The potential energy of the cantilever beam is given by:The potential energy of the cantilever beam is given by:

∫ ∫−=Π
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The principle of stationary potential energy: 

“Among all the admissible configurations of a conservative 
system, those that satisfy the equations of equilibrium 
make the potential energy stationary w.r.t. small 
admissible variations of displacement”

Applying a small variation to w(x) in the above, we get:

The principle of stationary potential energy: 

“Among all the admissible configurations of a conservative “Among all the admissible configurations of a conservative 
system, those that satisfy the equations of equilibrium system, those that satisfy the equations of equilibrium 
make the potential energy stationary w.r.t. small make the potential energy stationary w.r.t. small 
admissible variations of displacement”admissible variations of displacement”

Applying a small variation to w(x) in the above, we get:
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Since δ w = δ w’ = 0 at x = 0, the above leads to the following:

EI w′″′ = q(x) [Euler-Bernaulli  equation

and EI w″ (x = l) = 0      [Natural boundary conditions

EI w″′(x = l) = 0      [     ” ” ”

Since δ w = δ w’ = 0 at x = 0, the above leads to the following:

EI w′″′ = q(x) [Euler-Bernaulli  equation

and EI w″ (x = l) = 0      [Natural boundary conditions

EI w″′(x = l) = 0      [     ” ” ”
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Integrating the first term on the right by parts, we get:Integrating the first term on the right by parts, we get:
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Steps 
involved 
in
FE analysis

Steps Steps 

involved involved 

inin

FE analysisFE analysis

Discretise the continuum into many subregions called finite 
elements of arbitrary size, shape and orientation

Each element is assumed to be connected to the neighbouring 
elements only at a finite number of discrete points called
nodes

The displacements at the nodes are assumed as the basic 
unknowns of the problem

Thus, the number of degrees of freedom of the problem is 
reduced from infinity to a finite number

Discretise the continuum into many subregions called finite 
elements of arbitrary size, shape and orientation

Each element is assumed to be connected to the neighbouring 
elements only at a finite number of discrete points called
nodes

The displacements at the nodes are assumed as the basic 
unknowns of the problem

Thus, the number of degrees of freedom of the problem is 
reduced from infinity to a finite number

````

 

Hole 

Given physical problem Finite element discretisation 

 

Hole 

Given physical problem Finite element discretisation 
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Concept of InterpolationConcept of Interpolation  
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Ni(x,y)  are called the interpolation functions

or shape functions

Ni(x,y)  are called the interpolation functions
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Now, let us assume (for the time being) 
that by some means we know the nodal 
degrees of freedom (say, displacements) 
of any one typical finite element;

Can we then calculate the displacement 
field within the element?

Now, let us assume (for the time being) 
that by some means we know the nodal 
degrees of freedom (say, displacements) 
of any one typical finite element;

Can we then calculate the displacement 
field within the element?
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Example:1

Bar element

Example:1Example:1

Bar elementBar element

u(x) = a + bx

@ x = 0, u = u1

@ x = l, u = u2

u(x) = (1 – x / l) u1

+ (x / l) u2

= N1 u1 + N2 u2

Thus N1, N2 are one-dimensional interpolation functions 

given by:

N1(x) = (1 – x / l) and N2(x) =  x / l

u(x) = a + bx

@ x = 0, u = u1

@ x = l, u = u2

u(x) = (1 – x / l) u1

+ (x / l) u2

= N1 u1 + N2 u2

Thus N1, N2 are one-dimensional interpolation functions 

given by:

N1(x) = (1 – x / l) and N2(x) =  x / l

 u1 u2 

x 
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N1 

N2 

u2 
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1 

 u1 u2 

x 

u1 

N1 

N2 

u2 

1 

1 



National Institute of Technology Calicut 

Example:2

Triangular plane  element

Example:2

Triangular plane  element

u(x, y) can be written as:

u(x, y) = a + b x + c y

= [1     x      y] 

=   [x]{a}

a, b, c are determined by solving 

the following system of equations:

Or in matrix notation: {ue} = [A]{a}

∴ u(x, y) = [x] [A]–1 {ue} = [N] {ue};   ∴ [N] = [x] [A]–1

And u(x, y) = N1 u1 +  N2 u2 +  N3 u3

u(x, y) can be written as:

u(x, y) = a + b x + c y

= [1     x      y] 

=   [x]{a}

a, b, c are determined by solving 

the following system of equations:

Or in matrix notation: {ue} = [A]{a}

∴ u(x, y) = [x] [A]–1 {ue} = [N] {ue};   ∴ [N] = [x] [A]–1

And u(x, y) = N1 u1 +  N2 u2 +  N3 u3
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N1, N2 and N3 are linear interpolation polynomials in x and y, 

which are given by:

,  i = 1, 2, 3

where ai = xj yk – xk yij

bi = yj – yk

ci = xk – xj

and i,j and k are to be taken in a cyclic order.  For example, 

when i = 1, j and k should be 2 and 3 respectively.  

And

= 2 × Area of the triangle

N1, N2 and N3 are linear interpolation polynomials in x and y, 

which are given by:

,  i = 1, 2, 3

where ai = xj yk – xk yij

bi = yj – yk

ci = xk – xj

and i,j and k are to be taken in a cyclic order.  For example, 

when i = 1, j and k should be 2 and 3 respectively.  

And

= 2 × Area of the triangle

)(
2

1
ycxbaN iiii ++

∆
= )(

2

1
ycxbaN iiii ++

∆
=

33

22

11

1

1

1

yx

yx

yx

=∆

33

22

11

1

1

1

yx

yx

yx

=∆



National Institute of Technology Calicut 

Thus, we have seen now that if the nodal displacement 

vector is known, we can calculate the displacement at any 

point within any element. 

That is, we can determine the displacement field once we 

know the nodal displacements.

Thus, we have seen now that if the nodal displacement 

vector is known, we can calculate the displacement at any 

point within any element. 

That is, we can determine the displacement field once we 

know the nodal displacements.

 

u1 

u2 

u3 
1 N1 

Figure: Interpolation polynomial N1 for triangular element Figure: Interpolation polynomial N1 for triangular element 
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The Strain-Displacement Relations

Once we know the displacement at any point, we can get 

the strain vector at the point by invoking the strain-
displacement relations as given by:

The StrainThe Strain--Displacement RelationsDisplacement Relations

Once we know the displacement at any point, we can get 

the strain vector at the point by invoking the strain-
displacement relations as given by:
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For a two-dimensional elasticity problem, the components 
of the strain tensor are given by:

For a two-dimensional elasticity problem, the components 
of the strain tensor are given by:
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Since       {u} = [N] {ue},  

we have, {ε} = [L] {u} = [L] [N] {ue} 

Or           {ε} = [B] {ue}

where [B] is called the strain-displacement matrix

Since       {u} = [N] {ue},  

we have, {ε} = [L] {u} = [L] [N] {ue} 

Or           {ε} = [B] {ue}

where [B] is called the strain-displacement matrix
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In matrix notation:In matrix notation:

Or     {ε} = [L] {u}
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The Constitutive RelationsThe Constitutive Relations
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where   E – Young’s modulus; ν – Poisson’s ratiowhere   E – Young’s modulus; ν – Poisson’s ratio

The stress-strain relations are given in matrix form as follows:

{σ} = [D] {ε} 

[D] is called the constitutive matrix.

For plane stress problems:

The stress-strain relations are given in matrix form as follows:

{σ} = [D] {ε} 

[D] is called the constitutive matrix.

For plane stress problems:
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If there is an initial stress field σo(x) and an initial strain field 

εo(x), the corresponding constitutive relationship is:

If there is an initial stress field σo(x) and an initial strain field 

εo(x), the corresponding constitutive relationship is:

}{}){}]({[}{ ooD σεεσ +−= }{}){}]({[}{ ooD σεεσ +−=

For the case of a three dimensional (linearly elastic  
isotropic) problem, the stress strain relations are given by:

For the case of a three dimensional (linearly elastic  
isotropic) problem, the stress strain relations are given by:

ijijkkij µεδλεσ 2+= ijijkkij µεδλεσ 2+=

To recapitulate, we have the following relations:

{u} = [N] {ue} – displacements within any element

{ε} = [B] {ue} – strain within any element

{σ} = [D] [B] {ue} – stress within any element

To recapitulate, we have the following relations:

{u} = [N] {ue} – displacements within any element

{ε} = [B] {ue} – strain within any element

{σ} = [D] [B] {ue} – stress within any element
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Principle of Virtual WorkPrinciple of Virtual WorkPrinciple of Virtual Work

Consider a virtual displacement field denoted by δ u. The 
corresponding nodal displacement vector is δ ue and,

{δ u} = [N] {δ ue}

The virtual strain field produced by the above displacement 

field is denoted by δε and is related to the virtual nodal 
displacement vector by:

{δε} = [B] {δ ue}

Consider a virtual displacement field denoted by δ u. The 
corresponding nodal displacement vector is δ ue and,

{δ u} = [N] {δ ue}

The virtual strain field produced by the above displacement 

field is denoted by δε and is related to the virtual nodal 
displacement vector by:

{δε} = [B] {δ ue}

Now, let us address the earlier question –

How do we get the nodal displacements in the first place?

Now, let us address the earlier question –

How do we get the nodal displacements in the first place?How do we get the nodal displacements in the first place?
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⇒
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The principle of virtual work states that when a body is in 
equilibrium under the action of certain external loads, the 

external virtual work done by these loads over the virtual 

displacement field is equal to the internal virtual work done 
by the stresses over the virtual strain field.

Mathematically, the principle of virtual work can be written as:

The principle of virtual work states that when a body is in 
equilibrium under the action of certain external loads, the 

external virtual work done by these loads over the virtual 

displacement field is equal to the internal virtual work done 
by the stresses over the virtual strain field.

Mathematically, the principle of virtual work can be written as:
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Thus,  [K]{U} = {R}

where

Thus,  [K]{U} = {R}

where
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For the Triangular Element

The strain displacement matrix is given by,

It can be noticed that [B] is a matrix of constant elements.

Hence a constant strain field is obtained.

(hence, the name - constant strain triangle).

For the Triangular ElementFor the Triangular Element

The strain displacement matrix is given by,

It can be noticed that [B] is a matrix of constant elements.

Hence a constant strain field is obtained.

(hence, the name - constant strain triangle).
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The element stress field is given by:

{σ} = [D] [B] {ue}

where the elements of the 3 × 3 constitutive matrix [D] are 

obtained from Eq. 2a or 2b depending on whether the 

problem is a plane stress one or a plane strain one.

The element stiffness matrix can be obtained as:

[ke] =                       = BT DB × area of triangle 

× thickness of element

Explicit expression for ke are available in standard text 

books.

The element stress field is given by:

{σ} = [D] [B] {ue}

where the elements of the 3 × 3 constitutive matrix [D] are 

obtained from Eq. 2a or 2b depending on whether the 

problem is a plane stress one or a plane strain one.

The element stiffness matrix can be obtained as:

[ke] =                       = BT DB × area of triangle 

× thickness of element

Explicit expression for ke are available in standard text 

books.
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Assembly of Element MatricesAssembly of Element MatricesAssembly of Element Matrices
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Element stiffness matrix and load vector are calculated 

for each element and then assembled to get the global 

stiffness matrix and global load vector.

Element stiffness matrix and load vector are calculated 

for each element and then assembled to get the global 

stiffness matrix and global load vector.

Let us consider an example:Let us consider an example:



National Institute of Technology Calicut 
























=




































=













2
2

2
1

2
22

2
21

2
12

2
11

2
2

2
1

1
2

1
1

1
22

1
21

1
12

1
11

1
2

1
1

;
u

u

kk

kk

q

q

u

u

kk

kk

q

q
























=




































=













2
2

2
1

2
22

2
21

2
12

2
11

2
2

2
1

1
2

1
1

1
22

1
21

1
12

1
11

1
2

1
1

;
u

u

kk

kk

q

q

u

u

kk

kk

q

q

Compatibility: u1
1 =  u1;          u2

1 = u1
2 = u2;             u2

2 =  u3

Equilibrium: q1
1 =  q1;         q2

1 + q1
2 = q2;           q2

2 =  q3

Compatibility: u1
1 =  u1;          u2

1 = u1
2 = u2;             u2

2 =  u3

Equilibrium: q1
1 =  q1;         q2

1 + q1
2 = q2;           q2

2 =  q3

 
1 2 

1 
2 3 

 
1 2 

1 
2 3 

q1 q2 q3           Nodal forces

u1 u2 u3           Nodal displacements

q1 q2 q3           Nodal forces

u1 u2 u3           Nodal displacements
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This is of the form:

[K]{U}  =  {R}

[K] is singular.  Suppose u3 =  0.

Discarding the third row and column of K, we get:

This is of the form:

[K]{U}  =  {R}

[K] is singular.  Suppose u3 =  0.

Discarding the third row and column of K, we get:
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Find {u1  u2}
TFind {u1  u2}
T
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The first equation reads as:

Kff Uf + Kfr Ur = Rf

Most often, Ur = 0. (We will consider the case of non-zero Ur

later).

Then,       Kff Uf = Rf.  

Kff is called the reduced stiffness matrix

The first equation reads as:

Kff Uf + Kfr Ur = Rf

Most often, Ur = 0. (We will consider the case of non-zero Ur

later).

Then,       Kff Uf = Rf.  

Kff is called the reduced stiffness matrix
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Concept of Reduced Stiffness MatrixConcept of Reduced Stiffness MatrixConcept of Reduced Stiffness Matrix

The stiffness matrix, and displacement and load vectors can 
be partitioned as follows:

The stiffness matrix, and displacement and load vectors can 
be partitioned as follows:
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Only the reduced stiffness matrix is assembled

The set of linear algebraic equations [Kff ] {Uf } = {Rf } is 

solved to get {Uf } 

Once Uf is known, the nodal displacement vector ue for each 

element can be extracted; the displacement, strain and 
stress fields within the element are then calculated using the 

earlier relations:

{u} = [N ] {ue}

{ε } = [B ] {ue}

{σ } = [D] [B] {ue} 

The reactions are determined from each of the element 

contributions as:

{re} = [ke] {ue}

Only the reduced stiffness matrix is assembled

The set of linear algebraic equations [Kff ] {Uf } = {Rf } is 

solved to get {Uf } 

Once Uf is known, the nodal displacement vector ue for each 

element can be extracted; the displacement, strain and 
stress fields within the element are then calculated using the 

earlier relations:

{u} = [N ] {ue}

{ε } = [B ] {ue}

{σ } = [D] [B] {ue} 

The reactions are determined from each of the element 

contributions as:

{re} = [ke] {ue}
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Recapitulation

Steps in FE Analysis:

Discretise the domain into finite elements

Each element is connected to neighbouring ones only at nodes

The nodal displacements are the basic unknowns of the 

problem

For each element determine the element stiffness matrix using 

the following relation:

and the element load vector by:

Recapitulation

Steps in FE Analysis:Steps in FE Analysis:

Discretise the domain into finite elementsDiscretise the domain into finite elements

Each element is connected to Each element is connected to neighbouringneighbouring ones only at nodesones only at nodes

The nodal displacements are the basic unknowns of the The nodal displacements are the basic unknowns of the 

problemproblem

For each element determine the element stiffness matrix using For each element determine the element stiffness matrix using 

the following relation:the following relation:

and the element load vector by:and the element load vector by:

∫=

V

Te
dVBDBk ]][[][][ ∫=

V

Te
dVBDBk ]][[][][

∫∫ +=
S

T

V

Te dVpNdVbNr }{][}{][}{ ∫∫ +=
S

T

V

Te dVpNdVbNr }{][}{][}{
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Assemble the element stiffness and load matrices to get the 
global stiffness matrix and global load array as:

In the above, one need assemble only the reduced stiffness 
matrix (corresponding to the free degrees of freedom alone) 
and the corresponding load vector to obtain the system of 
equations:

[Kff]{Uf} = {Rf}

Solve the above using Gauss elimination to determine the 
unknown nodal displacements

Extract element nodal displacements

Calculate the displacements, strains and/or stresses within 
any element as required

Assemble the element stiffness and load matrices to get the Assemble the element stiffness and load matrices to get the 
global stiffness matrix and global load array as:global stiffness matrix and global load array as:

In the above, one need assemble only the reduced stiffness In the above, one need assemble only the reduced stiffness 
matrix (corresponding to the free degrees of freedom alone) matrix (corresponding to the free degrees of freedom alone) 
and the corresponding load vector to obtain the system of and the corresponding load vector to obtain the system of 
equations:equations:

[[KKffff]{]{UUff} = {} = {RRff}}

Solve the above using Gauss elimination to determine the Solve the above using Gauss elimination to determine the 
unknown nodal displacementsunknown nodal displacements

Extract element nodal displacementsExtract element nodal displacements

Calculate the displacements, strains and/or stresses within Calculate the displacements, strains and/or stresses within 
any element as requiredany element as required

∑∑
==

==
nElems

e

e
nElems

e

e
rRkK
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}{}{;][][ ∑∑
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Programming Aspects of 
Finite Element Method

Programming Aspects of Programming Aspects of 

Finite Element MethodFinite Element Method

Elements of a simple FE computer code are presented below 

– “pseudo code” is used

Input requirements:

// Input no. of elements, no. of nodes, material properties

read nElems, nNodes, E, poissonRatio

// Input nodal coordinate data

for i=1, nNodes

read k, x[k], y[k]

// Input element connectivity and thickness data

for i=1, nElems

read k, nod(1,k), nod(2,k), nod(3,k), thick[k]

Elements of a simple FE computer code are presented below Elements of a simple FE computer code are presented below 

–– “pseudo code” is used“pseudo code” is used

Input requirements:Input requirements:

// Input no. of elements, no. of nodes, material properties// Input no. of elements, no. of nodes, material properties

read nElems, nNodes, E, poissonRatioread nElems, nNodes, E, poissonRatio

// Input nodal coordinate data// Input nodal coordinate data

for i=1, nNodesfor i=1, nNodes

read k, x[k], y[k]read k, x[k], y[k]

// Input element connectivity and thickness data// Input element connectivity and thickness data

for i=1, nElemsfor i=1, nElems

read k, nod(1,k), nod(2,k), nod(3,k), thick[k]read k, nod(1,k), nod(2,k), nod(3,k), thick[k]
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For the purpose of assembly, the following two matrices are 

usually employed:

Element connectivity array: Array containing the node 
numbers of each element

Destination array: Array containing the degree-of-freedom 
numbers at each node

Consider the following plane stress problem:

For the purpose of assembly, the following two matrices are For the purpose of assembly, the following two matrices are 

usually employed:usually employed:

Element connectivity array:Element connectivity array: Array containing the node Array containing the node 

numbers of each elementnumbers of each element

Destination array:Destination array: Array containing the degreeArray containing the degree--ofof--freedom freedom 

numbers at each nodenumbers at each node

Consider the following plane stress problem:Consider the following plane stress problem:

 

P1 

P2 

P3 
 

P1 

P2 

P3 

Example –

Plane stress problem

Example –

Plane stress problem
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Nodal connectivity array:

Destination array is initialized

to zero; the boundary restraint 

list is then directly read into it 

to get:

It is modified subsequently to:

Nodal connectivity array:Nodal connectivity array:

Destination array is initializedDestination array is initialized

to zero; the boundary restraint to zero; the boundary restraint 

list is then directly read into it list is then directly read into it 

to get:to get:

It is modified subsequently to:It is modified subsequently to:
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The global stiffness matrix will be of size  6 x 6The global stiffness matrix will be of size  6 x 6The global stiffness matrix will be of size  6 x 6
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The element stiffness matrix is also of size  6 x 6The element stiffness matrix is also of size  6 x 6

We need to post the elements of the element stiffness matrix 

into the global stiffness matrix. The kij
e element gets posted 

to the location Kpq which is decided by thethe nodal d.o.f. 

numbering of each element as follows:
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Element Element 11 Typical element Typical element ee

Local dofLocal dof 11 22 33 44 55 66

Global dof
Elem 1

Global dof
Elem 1 00 11 00 00 22 33

Elem 2Elem 2 00 00 66 00 22 33

Elem 3Elem 3 00 11 22 33 44 55

Elem 4Elem 4 22 33 66 00 44 55
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(Input continued):
// input boundary restraint list

read nDispRestrains
for i=1, nDispRestrains

read k, destn(1,k), destn(2,k)

// generation of destination array

neq = 0
for (j=1; j<=nNodes; ++j)

for i=1, 2
if (destn (i, j) = 0)

neq ++;
destn (i, j) = neq;

else
destn (i, j) = 0;

end if

(Input continued):(Input continued):

// input boundary restraint list// input boundary restraint list

read nDispRestrainsread nDispRestrains

for i=1, nDispRestrainsfor i=1, nDispRestrains

read k, destn(1,k), destn(2,k)read k, destn(1,k), destn(2,k)

// generation of destination array// generation of destination array

neq = 0neq = 0

for (j=1; j<=nNodes; ++j)for (j=1; j<=nNodes; ++j)

for i=1, 2for i=1, 2

if (destn (i, j) = 0)if (destn (i, j) = 0)

neq ++;neq ++;

destn (i, j) = neq;destn (i, j) = neq;

elseelse

destn (i, j) = 0;destn (i, j) = 0;

end ifend if
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// Assembly of element matrices
for  n = 1, nElems

getElementStiffness(n);   // call subprogram
dof = 0;
for  I = 1, 3

for  j = 1, 2
dof = dof + 1
node = nod(i, n)

kk[dof] = destn (j, node)
for i = 1, 6

if (kk [i] > 0) then
k = kk [i]
gLoad [k] += elemLoad [i]
for j=1, 6

if (kk [j] >  0) then
l = kk [j]
gStiff  (k, l) += elemStiff  (i, j)

end if
end if

// Assembly of element matrices// Assembly of element matrices
for  n = 1, nElemsfor  n = 1, nElems

getElementStiffness(n);   getElementStiffness(n);   // call subprogram// call subprogram
dof = 0;dof = 0;
for  I = 1, 3for  I = 1, 3

for  j = 1, 2for  j = 1, 2
dof = dof + 1dof = dof + 1
node = nod(i, n)node = nod(i, n)

kk[dof] = destn (j, node)kk[dof] = destn (j, node)
for i = 1, 6for i = 1, 6

if (kk [i] > 0) thenif (kk [i] > 0) then
k = kk [i]k = kk [i]
gLoad [k] += elemLoad [i]gLoad [k] += elemLoad [i]
for j=1, 6for j=1, 6

if (kk [j] >  0) thenif (kk [j] >  0) then
l = kk [j]l = kk [j]
gStiff  (k, l) += elemStiff  (i, j)gStiff  (k, l) += elemStiff  (i, j)

end ifend if
end ifend if
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Prescribed Nonzero D.O.F.Prescribed Nonzero D.O.F.Prescribed Nonzero D.O.F.

We have,     Kff Uf  +  Kfr Ur =  Rf

Kff Uf  =  Rf  − Kfr Ur

Specifically, as each element is assembled, calculate loads 

=  [ke] {d} produced by prescribed d.o.f. {d};

Subtract from element loads {r e} and assemble the net 

loads

We have,     We have,     KKffff UUf  f  +  K+  Kfrfr UUrr =  R=  Rff

KKffff UUf  f  =  R=  Rf  f  −− KKfrfr UUrr

Specifically, as each element is assembled, calculate loads Specifically, as each element is assembled, calculate loads 

=  [=  [kkee] {] {dd}} produced by prescribed d.o.f. produced by prescribed d.o.f. {{dd}};;

Subtract Subtract from element loads from element loads {{rr ee}} and assemble the net and assemble the net 

loadsloads

rr

rr
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Sparsity of [K ] – Use of Proper Node NumberingSparsity of Sparsity of [[K K ]] –– Use of Proper Node NumberingUse of Proper Node Numbering

• [K] is a sparse matrix (i.e., most of kij are zeros)

• The no. of nonzero elements of [K] and their magnitudes 

are not affected by node numbering – only the 
arrangement of the nonzero kij’s is affected

• kij is nonzero if and only if the dof’s i and j are both 

present in at least one element

• Semi-bandwidth b (bandwidth is 2b – 1)

• Some zeros might appear within the bandwidth also; but 
only zeros appear outside

• Sky-line storage method 

•• [[KK]] is a is a sparsesparse matrix (i.e., most of matrix (i.e., most of kkijij are zeros)are zeros)

•• The no. of nonzero elements of The no. of nonzero elements of [[KK]] and their magnitudes and their magnitudes 

are not affected by node numbering are not affected by node numbering –– only the only the 

arrangement of the nonzero arrangement of the nonzero kkijij’’ss is affectedis affected

•• kkijij is nonzero if and only if the is nonzero if and only if the dof’sdof’s ii and and jj are both are both 

present in at least one elementpresent in at least one element

•• SemiSemi--bandwidth bandwidth bb (bandwidth is (bandwidth is 22bb –– 11))

•• Some zeros might appear within the bandwidth also; but Some zeros might appear within the bandwidth also; but 

only zeros appear outsideonly zeros appear outside

•• SkySky--line storage method line storage method 
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To reduce the bandwidth b, number the nodes along the 

shorter dimension of the structure:

To reduce the bandwidth To reduce the bandwidth bb, number the nodes along the , number the nodes along the 

shorter dimension of the structure:shorter dimension of the structure:
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Good node numberingGood node numberingGood node numbering Bad node numberingBad node numberingBad node numbering

• Automatic node renumbering programs•• Automatic node renumbering programsAutomatic node renumbering programs
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Stress ComputationStress ComputationStress Computation

Either use {σ} = [D] {ε}

or use:

Since [B] involves differentiation, the stresses computed are 

less accurate in comparison with the displacement

In lower order elements, stresses are most accurate at the 

centroid of the element and least accurate at the corners

Either use Either use {{σσ} = [} = [DD] ] {{εε}}

or use:or use:

Since Since [[BB]] involves differentiation, the stresses computed are involves differentiation, the stresses computed are 

less accurate in comparison with the displacementless accurate in comparison with the displacement

In lower order elements, stresses are most accurate at the In lower order elements, stresses are most accurate at the 

centroid of the element and least accurate at the cornerscentroid of the element and least accurate at the corners

}{}){}]({[}{ ooD σεεσ +−= }{}){}]({[}{ ooD σεεσ +−=



National Institute of Technology Calicut 

In higher order elements, there are points at which 

stresses are obtained with maximum accuracy (optimal 
points)

Stresses at other locations are obtained by extrapolation 

from these points 

At nodes, it is better to calculate the stresses from various 
adjoining elements meeting at the node than from one 

element

For isoparametric elements, stresses are best calculated 
at the guassian points

In higher order elements, there are points at which In higher order elements, there are points at which 

stresses are obtained with maximum accuracy (optimal stresses are obtained with maximum accuracy (optimal 

points)points)

Stresses at other locations are obtained by extrapolation Stresses at other locations are obtained by extrapolation 

from these points from these points 

At nodes, it is better to calculate the stresses from various At nodes, it is better to calculate the stresses from various 

adjoining elements meeting at the node than from one adjoining elements meeting at the node than from one 

elementelement

For isoparametric elements, stresses are best calculated For isoparametric elements, stresses are best calculated 

at the guassian pointsat the guassian points



National Institute of Technology Calicut 

Support ReactionsSupport Reactions

Either store Krf and Krr initially itself and use them to get Rr

A particular reaction Ri can be obtained as:

Either store Krf and Krr initially itself and use them to get Rr

A particular reaction Ri can be obtained as:
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m – number of elements joined 

at the node

m m –– number of elements joined number of elements joined 

at the nodeat the node
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Element Shapes, Connection, GradingElement Shapes, Connection, GradingElement Shapes, Connection, Grading

Best to use regular-shaped elements

Do not distort too much

Poor Connections

Best to use regularBest to use regular--shaped elementsshaped elements

Do not distort too muchDo not distort too much

Poor ConnectionsPoor Connections
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Transition from Coarse to FineTransition from Coarse to FineTransition from Coarse to Fine

 coarse mesh 

fine mesh 

(a) 
 coarse mesh 

fine mesh 

(b) 
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Mesh for a Circular DomainMesh for a Circular Domain

 




