CE6101 THEORY OF ELASTICITY AND PLASTICITY

End Semester Examination - 9 Nov 2017
Time: 3 hours
Note: Answer all questions; Assume any missing data after stating clearly; and Read the questions carefully.

1. (a) Write in index notation: (i) equations of equilibrium, (ii) stress-strain relations, and (iii) strain-displacement relations.
(b) Combine the above and obtain Lamé-Navier equations.
2. (a) Write the tensor transformation laws for vectors and dyadics.
(b) Consider two Cartesian coordinate systems x_{i} and $x_{i}{ }^{\prime}$. The direction cosines of $x_{1}{ }^{\prime}$ and $x_{2}{ }^{\prime}$ with respect to x_{i} are $\mathbf{n}_{1}=[0.6124,0.5,-0.6124]$ and $\mathbf{n}_{2}=[0.3536,-0.866,-0.3536]$ respectively. Find the components of the transformation tensor $a_{i j}$.
(c) If the displacement components with respect to x_{i} at a point are: $u_{1}=0.012 \mathrm{~mm}, u_{2}=-0.021 \mathrm{~mm}, u_{3}=$ 0.009 mm , determine the displacement components $u_{i}{ }^{\prime}$ with respect to $x_{i}{ }^{\prime}$. (d) Check the answer by comparing magnitudes of the two displacement vectors.
3. A ring fixed at $r=b$ is subjected to a uniform circumferential shear at $r=a$ (where $a<b$) forming a couple M. Use the stress function $\phi=C \theta$ and determine the stress, strain and displacement fields inside the cylinder. Find an expression for the circumferential displacement v at $r=a$. The following relations may prove useful:

$$
\sigma_{r}=\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}} ; \sigma_{\theta}=\frac{\partial^{2} \varphi}{\partial r^{2}} ; \tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta}\right) ; \varepsilon_{r}=\frac{\partial u}{\partial r} ; \varepsilon_{\theta}=\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} ; \gamma_{r \theta}=\frac{\partial v}{\partial r}+\frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r}
$$

4. (a) Define kinematically admissible displacement field and statically admissible stress field.
(b) Write the mathematical statement of Clapeyron's theorem. Use it to derive principle of virtual work and principle of stationary potential energy. (c) State the principle of stationary potential energy.
5. Write an expression for the total potential energy of a cantilever beam of span l, flexural rigidity $E I$, subjected to a uniformly distributed transverse load q and a tip concentrated load P. Obtain the resulting Euler equation and natural boundary condition(s) of the problem.
6. (a) A prismatic shaft of narrow rectangular cross-section $(a \times b)$ is subjected to a torque T. Use approximate analysis based on membrane analogy and determine maximum shear stress and angle of twist per unit length.
(b) Use the above to find the maximum allowable torque of a prismatic shaft of 2 m length made by bending a plate of 6 mm thickness into the cross-sectional shape shown in Fig. 1. Allowable shear stress $=120 \mathrm{MPa}$, allowable total angle of twist $=1$ degree .
[3]
(c) If the cross-section in Fig. 1 is welded so that it becomes a closed thin square tube of same length 2 m , what is the maximum torque it can safely carry with the data given above.
[3]
7. (a) Name the three ingredients of theory of plasticity.

Figure 1
(b) Explain with aid of uniaxial stress-strain diagrams: (i) How you will distinguish between nonlinearly and elastoplastic behaviours, and (ii) The difference between isotropic and kinematic hardening.
8. (a) Write the von Mises yield criterion and sketch the yield surface in three-dimensional principal stress space.
(b) Write the von Mises criterion for plane stress problems and show the yield surface on $\sigma_{1}-\sigma_{2}$ space.
(c) How does it get modified subsequently in the case of isotropic and kinematic hardenings?

