

## Continued...(4)

Mohammed Ameen, Ph.D
Professor of Civil Engineering

# Introduction to Structural Mechanics 

## Truss

A structure made by joining members at their ends to support stationary and moving loads



A bridge truss


## Truss for stadium



## Transmission line tower





## Communication

towers

Transmission line tower



## Transmission line towerspace truss

## Bridge truss plane truss




Truss for stadium
Bridge truss-plane truss


1

National Institute of Technology Calicut


Fink Truss

(2) National Institute of Technology Calicut


## Simple plane truss

Made of triangles (or tetrahedra)
$m=2 j-3$ (plane truss)
$m=3 j-6$ (space truss)
$m$ number of members;
$j$ number of joints;


If there are more members than $2 j-3$, it is "internally statically indeterminate"; If there are more supports, it is "externally statically indeterminate"

## Commonly used cross-sections


angle section

channel section
I-section pipe section

Connections
Riveted, bolted and welded


## Static Determinacy-Internal and External

 King Post Truss

Internally and externally statically determinate truss


Statically determinate truss


Internally statically indeterminate


Both internally and externally indeterminate truss

## Ideal Truss-Assumptions:

- Bars are connected at the ends by frictionless pin joints
- Axes of all members lie in one plane called the "middle plane" of the truss
- Loads are applied at the joints only, and they too lie in middle plane
- Self-weight of the truss members is neglected


## Analysis of Trusses

A Method of Joints

- Determine the support reactions first by using equations of equilibrium assuming the entire truss to be a rigid body
- Draw the free body diagrams of the pin joints

Example: Determine the member forces in the following truss.



1. Support Reactions:
$\underline{\Sigma} F_{\underline{x}}=0: H_{A}=10 \cos 45=\underline{\underline{7.071}} \mathrm{kN}$
$\sum M_{A}=0$ :
$3 V_{B}=1.5 \times 10 \sin 45+1 \times 10 \cos 45$
$\therefore V_{B}=5.8926 \mathrm{kN}$
$\Sigma \underline{M}_{\underline{B}}=0:$
$3 V_{A}=1.5 \times 10 \sin 45-1 \times 10 \cos 45$
$\therefore V_{A}=1.1785 \mathrm{kN}$
Check: $\Sigma F_{Y}=0: V_{A}+V_{B}=10 \sin 45$

## Joint A

$\Sigma F_{y}=0: F_{A C} \sin \theta+1.1785=0 ;$
$\therefore F_{A C}=-2.125 \mathrm{kN}$
$\Sigma F_{X}=0: F_{A C} \cos \theta+F_{A B}=7.071$;
$\therefore F_{A B}=8.839 \mathrm{kN}$


Joint B

$$
\begin{aligned}
& \Sigma F_{y}=0: F_{B C} \sin \theta+5.8926=0 ; \\
& \therefore F_{B C}=-10.623 \mathrm{kN}
\end{aligned}
$$

$$
\Sigma F_{x}=0: F_{B C} \cos \theta+F_{B A}=0 ;
$$

$$
\Sigma \therefore F_{B A}=8.839 \mathrm{kN}
$$




Exercise: Compute the member forces in the bridge truss shown above.

1. Reactions:


Joint A

$$
\begin{aligned}
& F_{A E}=-3.667 \div \sin \theta=-4.5833 \mathrm{kN} \\
& F_{A B}=-F_{A E} \cos \theta=2.75 \mathrm{kN}
\end{aligned}
$$



Joint B
$F_{B C}=F_{B A}=2.75 \mathrm{kN}$
$F_{B E}=4 \mathrm{kN}$

Joint E
$F_{E C} \sin \theta=4.5833 \sin \theta-4 ;$
$\therefore F_{E C}=-0.4167 \mathrm{kN}$
$F_{E F}=-\left(4.5833+F_{E C}\right) \cos \theta=-2.5 \mathrm{kN}$


Joint F
$F_{F D} \cos \theta=2.5 ; \therefore F_{F D}=4.1667 \mathrm{kN}$
$F_{F C}=-F_{F D} \sin \theta=-3.333 \mathrm{kN}$


## Exercise: Compute the member forces in the cantilever truss shown below.



It is not necessary to start the analysis with the determination of reactions for such cantilever trusses.
Instead, start with joint A.
Joint A

$$
\begin{aligned}
& F_{A E} \sin 30^{\circ}-500=0 ; \\
& \therefore F_{A E}=1000 \mathrm{~N}
\end{aligned}
$$

$$
F_{A E}
$$

$$
F_{A B}=-F_{A E} \cos 30^{\circ}=-866.025 \mathrm{~N}
$$

Joint B
$F_{B C}=866.025 \mathrm{~N} \quad F_{B C}$ $F_{B E}=0 \mathrm{~N}$


Joint E
$F_{E C} \sin 30+F_{E F} \sin 30=1000 \sin 30$ $F_{E C} \cos 30-F_{E F} \cos 30=-1000 \cos 30$
Solving, we get: $F_{E C}=0$; and $F_{E F}=1000 \mathrm{~N}$



Joint F
$F_{F D} \sin 49.1+F_{F G} \sin 30=1000 \sin 30+400$
$F_{F D} \cos 49.1-F_{F G} \cos 30=-1000 \cos 30$
Solving, we get: $F_{F D}=352.775 \mathrm{~N}$; and $F_{F G}=1266.708 \mathrm{~N}$


## B Method of Sections

A cut section of the truss is considered. The equilibrium of part of the truss to one side of the cut is used to solve for the member forces.

Example: Determine the forces in members marked 1, 2 and 3 of the truss shown below.


## Draw the free body diagram of the entire truss and determine the support reactions.

Make a cut through the three members; consider the free body diagram of the truss to the left of the cut.

$\Sigma F_{y}=0: F_{2} \sin 45=15-8 ; \therefore \boldsymbol{F}_{\mathbf{2}}=\mathbf{7} \sqrt{ } \mathbf{2} \mathbf{~ k N}$
$\Sigma M_{a}=0: F_{3} \times 4=4 \times 4+15 \times 4 ; \therefore \boldsymbol{F}_{3}=\mathbf{1 9} \mathbf{k N}$
$\Sigma M_{b}=0: F_{1} \times 4+4 \times 4+15 \times 8-8 \times 4$;
$\therefore F_{1}=\mathbf{- 2 6} \mathbf{k N}$

$$
\text { Check } \Sigma F_{x}=0
$$



## Exercise: Determine the bar forces in the truss shown above.

## Answer:


(2) National Institute of Technology Calicut


Exercise1: Determine the bar forces in the fink truss shown above.

Exercise2: Determine the bar forces in the pratt truss shown below.


