Isoparametric Triangles and Tetrahedra

Introduction:

- Triangles with curved edges and tetrahedra with curved faces can be developed
- Special numerical integrations are necessary
- Elements with straight edges and uniform spacing of edge nodes is a special case, and can be integrated exactly using special formulae

Linear Triangle:

- Natural coordinates r and s are used
- Interpolation polynomials are given by

$$
\begin{aligned}
& N_{1}=1-r-s \\
& N_{2}=r ; \quad N_{3}=s
\end{aligned}
$$

Node	(r, s)
1	0,0
2	1,0
3	0,1

Isoparametric formulation

$$
\begin{aligned}
& \begin{array}{ll}
x=\sum N_{i} x_{i} ; & y=\sum N_{i} y_{i} \\
u=\sum N_{i} u_{i} ; & v=\sum N_{i} v_{i}
\end{array} \quad\left\{\begin{array}{l}
\frac{\partial u}{\partial r} \\
\frac{\partial u}{\partial s}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s}
\end{array}\right]\left\{\begin{array}{l}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y}
\end{array}\right\} \\
& {[J]=\left[\begin{array}{cc}
\Sigma N_{i, r} x_{i} & \Sigma N_{i, r} y_{i} \\
\Sigma N_{i, s} x_{i} & \Sigma N_{i, s} y
\end{array}\right]=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right]=\left[\begin{array}{ll}
x_{21} & y_{21} \\
x_{31} & y_{31}
\end{array}\right] ; \begin{array}{l}
x_{i j}=x_{i}-x_{j} \\
y_{i j}=y_{i}-y_{j}
\end{array}}
\end{aligned}
$$

$|J|=2 A, A$ is the area of the triangle
A is positive, if nodes are numbered counter-clockwise around the triangle. Then [B] can be calculated much the same way as was done for isoparametric quadrilateral elements

$$
[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}
y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\
0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\
x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right] ; \quad\left[k^{e}\right]=\int B^{T} D B t d A=B^{T} D B t A
$$

Quadratic Triangle:

- Natural coordinates r and s are used
- Interpolation polynomials are given by

$$
\begin{aligned}
& N_{1}=(1-r-s)(1-2 r-2 s) \\
& N_{2}=r(2 r-1) \\
& N_{3}=s(2 s-1) \\
& N_{4}=4 r(1-r-s) \\
& N_{5}=4 r s \\
& N_{6}=4 s(1-r-s)
\end{aligned}
$$

- Here, for example, J_{11} is given by

$$
J_{11}=\frac{\partial x}{\partial r}=(4 r+4 s-3) x_{1}+(4 r-1) x_{2}-4(2 r+s-1) x_{4}+4 s x_{5}-4 s x_{6}
$$

The multiplier of x_{3} is zero. The other terms of $J_{i j}$ are obtained along similar lines.

Numerical Integration

- In a distorted triangle with curved edges and nonuniformly spaced side nodes, J is not a constant
- The terms in integrands are ratios of polynomials
- Numerical integration is the only viable alternative
- A variety of numerical quadrature schemes are available

$$
\int_{A} \phi d A=\sum_{i=1}^{n} \phi_{i} J_{i} W_{i}, \text { where } J_{i}=\frac{1}{2}|\mathbf{J}|_{i}
$$

The factor $1 / 2$ appears because the area of the mapped triangle in $r s$-plane is $1 / 2$

No. of Points	Figure	Degree of Precision*	Coordinates $\left(r_{i}, s_{i}\right)$	Weights W_{i}
1	a	1	$(1 / 3,1 / 3)$	1.0
3	b	2	$(1 / 3,1 / 6),(1 / 6,1 / 6),(1 / 6,2 / 3)$	$1 / 3$
3	c	2	$(1 / 2,0),(0,1 / 2),(1 / 2,1 / 2)$	$1 / 3$
4	d	3	$(1 / 3,1 / 3)$	$27 / 48$
			$(3 / 5,1 / 5),(1 / 5,1 / 5),(1 / 5,3 / 5)$	$25 / 48$

* Degree of highest polynomial terms in r and s that are integrated exactly by this formula. Specifically, a rule with degree of precision k exactly integrates all terms of the form $r^{l} s^{m}$ when $l+m \leq k$, and is inexact for at least one term $r^{l} s^{m}$ when $l+m>k$
- By retaining only vertex nodes, we get a four-noded linear tetrahedral element with shape functions:
$N_{1}=1-r-s-t$
$N_{2}=r ; \quad N_{3}=s ; N_{4}=t$
- $N_{i}=0$ is the equation of the tetrahedron face that doesn't pass through node i
- For the 10 -noded quadratic tetrahedron, each N_{i} is the

Node	(r, s, t)
1	$0,0,0$
2	$1,0,0$
3	$0,1,0$
4	$0,0,1$
5	$1 / 2,0,0$
6	$0,1 / 2,0$
7	$0,0,1 / 2$
8	$1 / 2,1 / 2,0$
9	$0,1 / 2,1 / 2$
10	$1 / 2,0,1 / 2$

$N_{2}=r(2 r-1) ; N_{3}=s(2 s-1) ; N_{4}=t(2 t-1)$
$N_{5}=4 r(1-r-s-t) ; N_{6}=4 s(1-r-s-t) ; N_{7}=4 t(1-r-s-t)$
$N_{8}=4 r s ; N_{9}=4 s t ; N_{10}=4 t r$

- Higher order tetrahedra have internal nodes like higher order triangles

Pascal Triangle	p	N
1	0	
$x y$	1	3
$x^{2} x y y^{2}$	2	6
$x^{3} x^{2} y x y^{2} y^{3}$	3	10
$x^{4} x^{3} y x^{2} y^{2} x y^{3} y^{4}$	4	15
\vdots		

$$
N=(p+1)(p+2) / 2
$$

N, no. of nodes $=$ no. of terms p, degree of polynomial For tetrahedra,

$$
N=(p+1)(p+2)(p+3) / 6
$$

Isoparametric tetrahedra: This is similar to the case of triangular elements
$x=\sum N_{i} x_{i} ; \quad y=\sum N_{i} y_{i} ; \quad z=\sum N_{i} z_{i}$
$u=\sum N_{i} u_{i} ; \quad v=\sum N_{i} v_{i} ; \quad w=\sum N_{i} w_{i}$
Numerical Integration: Let $\phi=\phi(r, s, t)$ represent a single coefficient of k^{e}. Then $\int_{\mathrm{V}} \phi d V=\sum \phi_{i} J_{i} W_{i}$, where $J_{i}=1 / 6|[\mathrm{~J}]| ;(1 / 6$ is the volume of the mapped tetrahedron See Table 7.4-2 (p268) of RD Cook et al. Concepts and Applications of FEA (4 $4^{\text {th }}$ edition)

