Isoparametric Triangles and Tetrahedra

Introduction:

- Triangles with curved edges and tetrahedra with curved faces can be developed
- Special numerical integrations are necessary
- Elements with straight edges and uniform spacing of edge nodes is a special case, and can be integrated exactly using special formulae

Linear Triangle:

- Natural coordinates r and s are used
- Interpolation polynomials are given by

$$N_1 = 1 - r - s$$

 $N_2 = r; N_3 = s$

Isoparametric formulation

$$\begin{aligned} \mathbf{x} &= \sum N_i \, \mathbf{x}_i \,; \quad \mathbf{y} = \sum N_i \, \mathbf{y}_i \\ u &= \sum N_i \, u_i \,; \quad \mathbf{v} = \sum N_i \, \mathbf{v}_i \end{aligned} \qquad \begin{cases} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial s} \\ \frac{\partial u}{\partial s} \end{cases} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \end{bmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial y} \end{pmatrix} \end{aligned}$$
$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \sum N_{i,r} \mathbf{x}_i & \sum N_{i,r} \mathbf{y}_i \\ \sum N_{i,s} \mathbf{x}_i & \sum N_{i,s} \mathbf{y} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \mathbf{y}_1 \\ \mathbf{x}_2 & \mathbf{y}_2 \\ \mathbf{x}_3 & \mathbf{y}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{21} & \mathbf{y}_{21} \\ \mathbf{x}_{31} & \mathbf{y}_{31} \end{bmatrix}; \quad \begin{aligned} \mathbf{x}_{ij} = \mathbf{x}_i - \mathbf{x}_i \\ \mathbf{y}_{ij} = \mathbf{y}_i - \mathbf{y}_i \end{aligned}$$

(2...)

|J| = 2 A, A is the area of the triangle

A is positive, if nodes are numbered counter-clockwise around the triangle. Then [B] can be calculated much the same way as was done for isoparametric quadrilateral elements

$$[B] = \frac{1}{2A} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix}; \qquad [k^e] = \int B^T DB \ t \ dA = B^T DB \ t \ A$$

Quadratic Triangle:

- Natural coordinates r and s are used
- Interpolation polynomials are given by

 $N_1 = (1 - r - s) (1 - 2r - 2s)$

$$N_2 = r\left(2r - 1\right)$$

$$N_3 = s \left(2s - 1 \right)$$

$$N_4 = 4r\left(1 - r - s\right)$$

$$N_5 = 4rs$$

 $N_6 = 4s (1 - r - s)$

• Here, for example, J_{11} is given by

$$J_{11} = \frac{\partial x}{\partial r} = (4r + 4s - 3) x_1 + (4r - 1) x_2 - 4(2r + s - 1) x_4 + 4s x_5 - 4s x_6$$

The multiplier of x_3 is zero. The other terms of J_{ij} are obtained along similar lines.

Numerical Integration

- In a distorted triangle with curved edges and nonuniformly spaced side nodes, J is not a constant
- The terms in integrands are ratios of polynomials
- Numerical integration is the only viable alternative
- A variety of numerical quadrature schemes are available

$$\int_{A} \phi \, dA = \sum_{i=1}^{n} \phi_i J_i W_i, \text{ where } J_i = \frac{1}{2} |\mathbf{J}|_i$$

The factor 1/2 appears because the area of the mapped triangle in rs-plane is 1/2

No. of Points	Figure	Degree of Precision*	Coordinates (r_i, s_i)	$\frac{\textbf{Weights}}{W_i}$
1	a	1	$(\frac{1}{3}, \frac{1}{3})$	1.0
3	b	2	$(\frac{2}{3}, \frac{1}{6}), (\frac{1}{6}, \frac{1}{6}), (\frac{1}{6}, \frac{2}{3})$	1/3
3	С	2	$(\frac{1}{2}, 0), (0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2})$	1/3
4	d	3	$(\frac{1}{3}, \frac{1}{3})$	27/48
			$(\frac{3}{5}, \frac{1}{5}), (\frac{1}{5}, \frac{1}{5}), (\frac{1}{5}, \frac{3}{5})$	25/48

* Degree of highest polynomial terms in r and s that are integrated exactly by this formula. Specifically, a rule with degree of precision k exactly integrates all terms of the form $r^l s^m$ when $l + m \le k$, and is inexact for at least one term $r^l s^m$ when l + m > k

• By retaining only vertex nodes, we get a four-noded linear tetrahedral element with shape functions:

$$N_1 = 1 - r - s - t$$

 $N_2 = r; N_3 = s; N_4 = t$

- N_i = 0 is the equation of the tetrahedron face that doesn't pass through node i
- For the 10-noded quadratic tetrahedron, each *N_i* is the product of two face functions:

$$N_{1} = (1 - r - s - t) (1 - 2r - 2s - 2t)$$

$$N_{2} = r (2r - 1); \quad N_{3} = s (2s - 1); \quad N_{4} = t (2t - 1)$$

$$N_{5} = 4r (1 - r - s - t); \quad N_{6} = 4s (1 - r - s - t); \quad N_{7} = 4t (1 - r - s - t)$$

$$N_{8} = 4rs; \quad N_{9} = 4st; \quad N_{10} = 4tr$$

2

Node	(r, s, t)		
1	0, 0, 0		
2	1, 0, 0		
3	0, 1, 0		
4	0, 0, 1		
5	$\frac{1}{2}, 0, 0$		
6	$0, \frac{1}{2}, 0$		
7	$0, 0, \frac{1}{2}$		
8	1/2, 1/2, 0		
9	$0, \frac{1}{2}, \frac{1}{2}$		
10	¹ / ₂ , 0, ¹ / ₂		

• Higher order tetrahedra have internal nodes like higher order triangles

Pascal Triangle	р	N	
1	0		
x y	1	3	
$x^2 xy y^2$	2	6	
$x^3 x^2y xy^2 y^3$	3	10	
$x^4 x^3y x^2y^2 xy^3 y^4$	4	15	

N = (p + 1) (p + 2)/2,

N, no. of nodes = no. of terms p, degree of polynomial For tetrahedra, N = (p + 1)(p + 2) (p + 3)/6

Isoparametric tetrahedra: This is similar to the case of triangular elements $x = \sum N_i x_i$; $y = \sum N_i y_i$; $z = \sum N_i z_i$ $u = \sum N_i u_i$; $v = \sum N_i v_i$; $w = \sum N_i w_i$ Numerical Integration: Let $\phi = \phi(r, s, t)$ represent a single coefficient of k^e . Then

 $\int_{V} \phi \, dV = \sum \phi_i J_i W_i$, where $J_i = \frac{1}{6} |[J]|$; ($\frac{1}{6}$ is the volume of the mapped tetrahedron See Table 7.4-2 (p268) of RD Cook et al. Concepts and Applications of FEA (4th edition)

<><><><>>