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ZZU101 ENGINEERING MECHANICS II—DYNAMICS 
 

Text Book: I.H. Shames, “Engineering Mechanics—Statics and Dynamics”, 4
th

 

Edition, Prentice Hall Inc, New Jersey, 1996. 

 

M O D U L E   1 

 

Kinematics of a Particle—Simple Relative Motion 
 

Dynamics has two branches—kinematics and kinetics (or dynamics) 

• Kinematics deals with the study of motion of particles and rigid bodies without consideration of 

the forces causing the motion. 

• It is the study of geometry of motion. 

• Kinematics needs to be mastered before attempting to learn Dynamics (or Kinetics). 

of a single particle 

of a system of particles 

of rigid bodies 

of a system of rigid bodies 

of a deformable body 

Dynamics 

 
The particle idealisation is valid if we are interested in the motion of the centre of mass alone and 

not in the size or orientation of the body during its motion. 

 

Part A: General Notions 

Differentiation of a Vector with Respect to Time 
 

For a scalar, we have  
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In the above, df/dt is another function of time, and can be further differentiated any number of 

times for suitable functions f (t) to get the higher derivatives. 
 

In the case of a vector, the variation in time may be due to: 

• a change in magnitude, 

• a change in direction, or 

• a change in both. 

Thus, the time derivative of a vector function F(t) is, by definition, 
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• If F has no change in direction during the time interval, the above definition is similar to the 

case of a scalar function. 

• When F changes in direction, dF/dt will be different in both magnitude and direction from F. 

Consider a particle moving along a curvilinear path as shown in Fig. 1. The rate of change of 

position vector r(t) with respect to time is defined as the velocity vector V relative to the same 

frame of reference xyz as that of r. Thus 
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Figure 1 

In the above, s is the arc length. As ∆t → 0, the direction of ∆r approaches the tangent direction of 

the path at position r(t) and approaches ∆s in magnitude. 

Hence, as ∆t → 0 
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where εεεεt is the unit vector tangential to the trajectory. Thus  

t
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Figure 2 

That is, d r/dt is a vector with magnitude equal to the speed of the particle and direction tangential 

to the path. The angle between r and V could be =90
o
, <90

o
 or >90

o
 as depicted in Fig. 2. The 

acceleration vector a is given by 
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Part: B Velocity and Acceleration Calculation 

Vectors can be expressed in many ways. We can use 

• rectangular components, 

• cylindrical polar components, 

• spherical polar components, or 

• path variables. 

We shall consider rectangular, cylindrical polar, and path variables in what follows. 

RECTANGULAR COMPONENTS 

If r is given by  

.)()()()( kjir tztytxt ++=  

Then the velocity vector, V(t) can be obtained as 

kji
r

V
dt

dz

dt

dy

dt

dx

dt

d
t ++==)(  or kjtV zyxt ���� ++=)( . 

The acceleration vector a(t) is given by 

.
)(

)(
2

2

kji
r

a zyx
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td
t ������ ++==  

Now, if a(t) is known in term of its components as given above, we can integrate its components to 

obtain the components of the velocity vector. Thus 

∫ += 1)()( CdttxtVx , 

where C1 is the constant of integration; C1, can be determined if Vx is known at any particular time 

instance, e.g. at t = t0. Integrating the above once again, we obtain 

[ ]∫ ∫ ++= .)( 21 CCdtdtxtx  

Knowing x at t = t0, we can determine C. 

Ex: 1 The pins A and B must always remain in the vertical slot of yoke C, which moves to the 

right with a constant speed of 2 m/s as shown in Fig. 3. The pins cannot leave the elliptic slot with 

the semi-major and minor axes of length 3 m and 2 m respectively. (a) What is the speed with 

which the pins approach each other when the yoke slot is at x = 2 m? (b) What is rate of change of 

speed toward each other when the yoke slot is at x = 2 m? 

              
Figure 3 

The equation of the ellipse is 
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At any time t, x (t) and y (t) must satisfy [A]. Also, )( and )( tytx ��  must be such that the pin B moves 

in the elliptic slot at all time. Now, differentiating [A], we obtain 

0
4

2

9

2
=+

yyxx ��
          [B] 

Thus, , ,  andx x y y� �must satisfy [B] for all time. 

Now, x� = 2 m/s (as the yoke moves with this speed). When x = 2, from [A] we get: y = 1.4907 m.  

Hence, from [B], we obtain 1926.1−=y� m/s. This is the speed with which pin B moves. The pin A 

moves with the same speed in the opposite direction. Hence, the speed with which the pins 

approach each other is 2×1.1926 = 2.3851 m/s. 

In order to get the acceleration of the pins, differentiate [B] once again to obtain 

( ) ( ) 0
2

1

9

2 22 =+++ yyyxxx ������        [C] 

The accelerations yx ����  and must satisfy [C]. Since the yoke moves with a constant speed, .0=x��  

Thus, we get By�� from  

( ) ( ) .04907.1)1926.1(
2

1
02

9

2 22 =+−++ y��  

Hence, 2385.0−=y��  m/s
2
. Therefore, the rate of change of speed toward each other when the yoke 

slot is at x = 2m is = 0.477 m/s
2
. 

Home work: If at x = 2 m, the yoke has a velocity of 2 m/s and an acceleration of 1 m/s
2
, find the 

above. 
 

 

Motion of Projectiles 

If we ignore air resistance, in the motion of a particle near the earth’s surface, we have 

81.9)( −=−= gty��  m/s
2
 (or 32.2 ft/s

2
). Also .0== zx ���� On integrating these accelerations, we can 

determine the position and velocity of these particles. 
 

Ex: 2  A shell is fired at an elevation of 200 m above a plane as shown in Fig. 4. The angle of 

firing is 15
o
 with respect to the horizontal. If the initial velocity of the shell as it is being fired is 

1000 m/s, determine the distance at which the shell hits the ground. Neglect the friction of the air. 

What is the maximum height to which the shell rises? What is the trajectory of the shell? 

2m/s 81.9)( −=−== g
dt

dV
ty

y
�� ,     [A] 

( ) 0xdV
x t

dt
= =�� ,       [B] 

and 0=== zzz ���  as the motion is coplanar. From [A], we obtain 

.81.9)( AttVy +−==  

and from [B] 

.)( BtVx =  

At t = 0, BVx == 15 cos 1000)0(  i.e. B = 965.926 m/s. And Vy (0) = 1000 sin 15 = A. That is, A 

= 258.819 m/s. 
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Figure 4 

Thus, Vx (t) = 965.926 m/s. And Vy (t) = 258.819 − 9.81 t m/s. Hence, x (t) = 965.926 t + C. And  

y (t) = 258.819 t − 9.81 t
2
 /2 + D         [C] 

At t = 0, x = 0, ⇒ C = 0. At t = 0, x = 0 ⇒  D = 0. 

To find “d”; first find “t’ to reach x = d,  y = −200. That is 

2

2

81.9
819.258200 tt −=− , 

from which we get  

81.9

200
2

81.9
4819.258819.258

2

−








 −
−±−

=t = 53.528 s. 

Hence, d = 965.926(53.528)/10
3
 = 51.704 km.  

To find ymax, we first find “t” corresponding to Vy
 
= 0. 

0 = 258.819 − 9.81 t.   =∴ t 26.38 s. 

Hence, ymax = 258.819 t − 9.81 t
2
/2 = 3414.234 m = 3.414 km. 

From [C], eliminating “t”, we get the trajectory: t = x / 965.926,  

2

926.9652

81.9

926.965

819.258
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which is a parabola. 

Ex: 3 A cannon is set to hit a target as shown Fig. 5. If the muzzle velocity is 750 m/s, at what 

angle α must the cannon be set to hit the target? 

 
Figure 5 

The acceleration components can be written as 

0;81.9 =−= xty ���� . 

Integrating the above, we obtain 

BxVAtyV xy ==+−== �� ;81.9 ,  

from which we have 

αsin  750)0( == AVy  and α cos 750)0( == BVx . 

Integrating once again, we get 

50 m 

y 
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10 km 
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Ctty ++
−

= αsin750
2

81.9 2         [A] 

Dtx += αcos750             [B] 

At t = 0, x = y = 0, leads to C = D = 0. 

From [B], we get 

 
cos750 α
x

t = , 

and from [A] 

α
α

α cos750

sin750

cos7502

81.9
22

2 xx
y

⋅
+

−
= . 

Using the condition x = 10
4
 m, y = −50 m and sec

2
 α = 1 + tan

2
 α in the above, we obtain 

42

2

8

10tan)tan1(
750

10

2

81.9
50 αα ++

−
=− , 

or −872 tan
2
 α + 10

4
 tan α − 872 = 0; from which we get 

.0828.0,385.11
8722

)822)(872(41010
tan

84

=
×−

−±−
=∴ α  

The solutions of the above are: .733.4;98.84
oo=α  The two possible firing angles are depicted in 

Fig. 6. 

 
Figure 6 

Ex: 4 The position of a particle at times t = 5 s, 2 s and 1 s are known to be; r(5) = (10i + 20j + 5k) 

m, r(2) = (5i − 10j + 3k) m and r(1) = (7i + 5j + 8k) m respectively. Determine the acceleration of 

the particle at t = 4s if the acceleration vector has the form, a(t) = At
2 

i + Bt j + Ct
3 

k m/s
2
; where A, 

B and C are constants. 

.
12
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3
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43

FDt
At

txD
At

tVx +=+=  

 Find A, D and F from the given conditions. Similarly,  

.
6

)(and   
2

)(
32

HGt
Bt

tyG
Bt

tVy ++=+=   

The remaining part is left as exercise. 

VELOCITY AND ACCELERATION IN TERM OF PATH VARIABLES 

At times, it is convenient to make use of certain geometrical parameters of the path. 

We have seen earlier that  

.t
dt

ds
V ε=  

where ds/dt is the speed, and εεεεt is the unit vector tangential to the path. The acceleration is obtained 

from the above by differentiating with respect to time as 
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Figure 7 

Now,  
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The derivative of the unit tangential vector εεεεt with respect to s is obtained as follows. Consider εεεεt at 

two ∆s apart. The plane containing these two unit vectors, εεεεt (s) and εεεεt (s + ∆s), is called the 

osculating plane
*
, and is shown in Fig. 7. Therefore, it follows that 
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Figure 8 

The limiting vector ∆εεεεt is denoted by εεεεn, and is called the principal normal vector, and is directed 

towards the centre of curvature as shown in Fig. 8. 

                                                 
*
 To osculate means to kiss. The plane is tangential to the curve (as if it kisses it). 
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φφ ∆=∆≈∆ tt εε  

and R ∆φ = ∆s. Therefore, we have 
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Therefore, the acceleration vector in terms of the path variables can be written as 

nt
R
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εεa
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In the case of a three-dimensional curve, first get εεεεt as a function of s. Differentiate εεεεt with respect 

to s. Then get both R and εεεεn (as the magnitude of dεεεεt /ds = 1/R, and the direction is along εεεεn. The 

unit vector normal to the osculating plane is called the binormal vector, and is given by εεεεb =εεεεn ×εεεεt.
*
 

Ex: 5 A particle p moves along a circular path of radius 1m as shown in Fig. 9. As it crosses the y-

axis it has an acceleration along the path of 2 m/s
2
, and has a speed of 7 m/s in the negative x-

direction. Determine the total acceleration of the particle. 

 
Figure 9 

The total acceleration of the particle can be obtained as 

( ) 2
2

2

2

2

m/s492)(
1
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Ex: 6 Determine the unit vectors εεεεt and εεεεn, and the radius of curvature at the point “a” in Fig. 10. 

From the equation of the curve, it follows that 

.
10

;
10

22

2

xdx

yd

xdx

dy
−==  

At “a”, y = 0 and x = 1. Therefore 

                                                 
*
 The Serret-Frenet’s formulae are given by 

n
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n
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ds
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ds

d
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d
ε

ε
εε

ε
ε

ε
ττκκ −=+−==  and; ; , 

where τ is known as the torsion of the curve and κ is the curvature. The curvature (which is the reciprocal 

of R) is a measure of rate of change of tangent vector, and torsion is a measure of rate of change of the 

binormal vector. 
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Figure 10 

From the above, we get R = 101.504 m. Now,  

.29.8410tan o

dx

dy
=∴== θθ  

Therefore, we get 

jijiε 995.00995.0sincos +=+= θθt , jijiε 0995.0995.0cossin −=−= θθn  and kεεε =×= tnb . 

Ex: 7 The path of a particle is given by, ττωττωττ CzAyAx === )(  and  cos)(,sin)( , where A, 

C and ω  are known constants. When the particle is at the x y plane (i.e. z = 0), it has a speed of Vo 

m/s and a rate of change of speed of N m/s
2
. What is the acceleration of the particle at this 

position? 

 
Figure 11 

The unit tangent vector is obtained as 

( )
ds

d
zyx

d

d

ds

d
t

τ
τ
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r

ε ++== . 

Now, as 

C
d

dz
A

d
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A
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τ
ωτω

τ
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τ
;sin;cos  and 222

dzdydxds ++= , 

we get 

τω dCAds
222 += . 
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The unit principal normal vector can be obtained as 

)(

)cos(sin
222
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As |εεεεn| = 1, we have 
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At the position when the particle is on the xy-plane, we have τ = 0. Then,  
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where .
2

222

ω
ω
A

CA
R

+
=  

CYLINDRICAL CO-ORDINATES 

The position of P is denoted by means of R, θ and z coordinates. (z along the axial direction). X = 

R cos θ, y = R sin θ, R = (x
2
 + y

2
)
1/2

 and θ = tan
−1

(y/x). The unit vectors εεεεz (= k), εεεεR, and εεεεθ  are 

directed along the axial, radial and circumferential (or transverse) directions respectively. The 

circumferential direction is normal to the plane formed by εεεεR and εεεεz, and has a sense given by right 

hand screw rule (with z, R, θ being the order of this permutation). See Fig. 12. 

 
Figure 12 

Thus, εεεεz is a constant vector; εεεεR and εεεεθ  will change the direction as the particle moves. The 

components along the cylindrical coordinates are most apt for several problems: e.g. in turbo 

machine studies z-axis is the axis of rotation. 

The position vector of P can be written as 

zR ZR εεr += . 

The velocity is obtained by differentiating the above with respect to t to get 

zrR zRR
dt

d
εεε

r
V ++== �� . 

Evaluation of Rε�  is as follows: 
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θ R 
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θ
θ

θ
θ d

d

dt

d

d

d

dt

d RRR
R

εεε
ε �� === . 

For a given R and z positions corresponding to θ and θ  + ∆θ , consider εεεεR and its change ∆εεεεR. Then 

θθ ∆=∆=∆ RR εε . 

As ∆θ → 0, the direction of ∆εεεεR approaches that of εεεεθ. Thus 

θθ θ εεεε ∆=∆=∆ RR . 

Therefore, we have 

θθ ε
ε

�=
dt

d R . 

 

Figure 13 

Thus, the velocity vector is obtained as 

.zR zRR εεεV ��� ++= θθ  

Now, to get the acceleration of the particle, we proceed as follows: 

.zRR zRRRRR
dt

d
εεεεεε

V
a ������������ +++++== θθθ θθθ  

We need to evaluation of θε�  which is done as given below. Firstly, we can write 

θ
θ

θθ
θ

��

d

d

dt

d εε
ε == . 

 

Figure 14 
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As ∆θ → 0, the direction of ∆εεεεθ approaches that of −εεεεR as shown in Fig. 14. Hence, we get 

.rεε θθ
�� −=  

Thus, the acceleration vector can be obtained as 

..2

zRr zRRRRR εεεεεεa ����������� ++−+= θθθ θθθθ  

Rearranging the above, we get 

( ) ( ) .2

zr zRzRRR εεεa ��������� +++−= θθθθ  

 

For motion along a circular path in the xy-plane, we have 0== zR ��  and z = 0. Thus 

θθ εV �r=  and 
rrr εεa 2θθ θ

��� −= . 

Also, εεεεθ  is tangential to the path as shown in Fig. 15. 

                   
Figure 15 

Ex: 8 The arm OA shown in Fig. 16 is 2m long, and its rotation about O is given by 
22.0 t=θ radians. The collar B slides along the arm such that its distance from O is given by 

.m )18.02( 2
tr −=  After the arm has rotated by 45

o
, determine (a) the total velocity of the collar, 

(b) the total acceleration of the collar, and (c) the relative acceleration of the collar with respect to 

the arm. 

 

Figure 16 

s98166.1)45(when ,2.0
4

;2.0 o22 ==∴== θ
π

θ ttt . 

Calculate V and a from 

θθ θθθθ εεaεεV )2()(, 2 �������� rrrrrr rr ++−=+=  

O 

 A 

B  r 

θ 
 

 P 

 y 

 r 
θ   x 

εεεεr εεεεθ  
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Simple Kinematical Relations and Applications 
Simple Relative Motion 

It may be advantageous to employ two or more references in describing the motion of a particle. 

Consider two references XYZ (fixed or inertial) and xyz (moving) as shown in Fig. 18. 

 
Figure 18 

Let xyz translate (i.e. the direction of xyz axes always retain the same orientation.) with respect to 

xyz. Consider a vector A(t) which varies with time. In general, the time variation of A will depend 

on the reference system. Let 

xyzXYZ dt

d

dt

d















 AA
  and   

represent the time derivatives of A as seen from XYZ and xyz respectively. Let us explore the 

relations between the above two. We have, working from first principles, 

( )
XYZ

zyx

XYZ

AAA
dt

d

dt

d





 ++=







kji

A
, 

where zyx AAA ,, are the scalar components of A along the xyz axes. 

As xyz translates relative to XYZ, the unit vector of xyz, viz. i, j and k are constant vectors as seen 

from XYZ. That is, although the lines of actions of i, j, k may change, their magnitude and direction 

as seen from XYZ are constant vectors. Therefore, we have 

kji
A

XYZ

z

XYZ

y

XYZ

x

XYZ dt

dA

dt

dA

dt

dA

dt

d







+







+







=







. 

In the above, zyx AAA  and, are scalar components of A. Their time derivative will not depend on 

the reference of observation. Thus 

xyz

x

XYZ

x

dt

dA

dt

dA







≡







 

and hence can be indicated simply as 
dt

dAx . Similarly, we have 

dt

dA

dt

dA

dt

dA y

xyz

y

XYZ

y ≡







≡








 and 

dt

dA

dt

dA

dt

dA z

xyz

z

XYZ

z ≡






≡







. 

Hence, we can write 

Inertial frame 

of reference 

Path of O, 

the origin of 

xyz 

Moving frame 

of reference 

y 
x 

z 

k 

j i 
O 

Z 

Y 

X 

y 
x 

z 

k 

j i 

y 
x 

z 

k 

j i 
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kji
A

dt

dA

dt

dA

dt

dA

dt

d zyx

XYZ

++=







. 

Therefore, it follows that 

xyzXYZ dt

d

dt

d







=






 AA
 and 

xyzXYZ dt

d

dt

d







=







. 

That is, the time derivative of a vector is the same for all reference axes that are translating relative 

to one another. 

Note: In the above, we have made use of the fact that the unit vectors i, j, k of xyz relative to XYZ 

are constants. If xyz rotates relative to XYZ, this is not valid, and more complex relation becomes 

necessary. 

A rigid body is said to translate if all its points are subject to the same velocity vector at every time 

t. 

 

Motion of Particle Relative to a Pair of Translating Axes 

 
Figure 19 

Consider a particle P, and a pair of references XYZ (inertial) and xyz (moving). The velocity V of P 

relative to XYZ is the time rate of change of position vector r for this reference. That is 

XYZ

XYZ
dt

d







=
r

V . 

Similarly, the velocity with respect to xyz is given by 

xyz

xyz
dt

d







=
ρ

V . 

Moreover,  

XYZdt

d







 R
 

is the velocity of the origin O of xyz reference as seen from XYZ. Since all points of xyz have the 

same velocity with respect to XYZ, the above is the velocity of reference xyz as seen from XYZ. 

Now, since, r = R + P, it follows that 

XYZXYZXYZ dt

d

dt

d

dt

d







+






=






 ρRr
 

which can be rewritten as 

xyzXYZ

XYZ
dt

d

dt

d







+=






+=
ρ

R
ρ

RV �� , 

or 

xyzXYZ VRV += � . 

Similarly, the acceleration equation can be written as 

ρρρρ 

P 

Z 

Y 

X 

z 
r 

y 

x 

O 
R 
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xyzaRa += ��XYZ , 

where 

XYZ

XYZ
XYZ

dt

d







=
V

a  and 

xyz

xyz

dt

d









=

V
axyz . 

Thus, we can see from the above two equations that the motion of a particle relative to XYZ is 

equal to the motion of the particle relative to xyz plus the motion of xyz relative to XYZ. Note that 

these equations are valid only when xyz has a translatory motion as seen from XYZ. 

Ex: 9 An aero plane is flying at a speed of 400 km/hr in a translatory manner relative to the ground 

reference XYZ as shown in Fig. 20. At the instant of interest, a downdraft causes the plane to 

accelerate downward at 30 km/hr/s. While this is happening, the pilot reduced the throttle so that 

the plane decelerates in the Y-direction at 20 km/hr/s. Thus, the acceleration of plane is a = −30 k − 

20 j km/hr/s. While this is happening, a solenoid is operated to close a valve which weighs 2.5 N. 

What is the force on the valve gate from the plane at the instant when the valve gate is moving 

downward relative to plane at a speed of 2 m/s and accelerating downwards relative to plane at 5 

m/s
2
?  

 
Figure 20 

Motion of valve gate with respect to plane, axyz = −5 k m/s
2
. The acceleration of O, the origin of 

xyz, with respect to xyz, jkR 2030 −−=�� km/hr/s. 

aXYZ = axyz + R��  = −5 k + (−30 k – 20 j)×10
3
/3600. 

That is
 
aXYZ = −5.555 j − 13.333 k m/s

2
. Now, From Newton’s Law, we have: F = m aXYZ. That is 

Fplane – 2.5 k = 2.5/9.81×(−5.555 j − 13.333 k). 

Therefore, Fplane = −1.4158 j − 0.898 k N. 

Ex: 10 A ferries wheel rotates a the instant of interest with an angular speed of 0.5 rad/s and an 

angular acceleration of 0.1 rad/s
2
 as depicted in Fig. 21a. A ball is thrown from the ground to an 

occupant a seat A. The ball arrives at the instant of interest with a velocity relative to the ground of 

VXYZ = −10 j −−−− 2 k ft/s. What is the velocity and the acceleration of the ball relative to the occupant 

at seat A provided the seat does not swing? (Exercise: 11.78 in the Book) 

 
Figure 21 
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The radius of the wheel is 20
 
ft. The velocity of the ball can be written as 

RVV �+= xyzXYZ . 

Velocity of the seat A (see Fig. 21b) 

θθ εR �� r= = 20×0.5 = 10 k ft/s
2
. 

Therefore 

kVkj 10210 +=−− xyz , 

and hence  

kjV 1210 −−=xyz  ft/s. 

The acceleration relative to ground is given by 

xyzXYZ aRa += �� . rad/s5.0=θ� . 

The acceleration of the seat A is 

rrr εεR 2θθ θ
����� −= = 20×0.1 k − 20 ×0.5

2
 j = 2 k − 5 j ft/s

2
. 

Therefore,  

xyzg ajkk +−=− 52 ft/s
2
, 

from which we get 

32.2 2 5 5 34.2xyz = − − + = −a k k j j k . 

Particle-Dynamics 

We examined the geometry of motion—kinematics—in the last section. We shall now consider the 

Newton’s laws for the three systems of coordinates, viz., rectangular, cylindrical, and path 

coordinates. 
 

Caution regarding units: 1 kg mass when acted upon by a force of 1 N accelerates, relative to an 

inertial frame of reference at 1m/s
2
. 

 

Rectangular Coordinates: Rectilinear Translation 

NEWTON’S LAW FOR RECTANGULAR COORDINATES 

In rectangular coordinates, Newton’s law is expressed as  

F = m a, 

where F = Fx i + Fy j + Fz k and a = ax i + ay j + az k. Hence, the above in component form can be 

represented as 

2

2

dt

xd
m

dt

dV
mamF x

xx === , 
2

2

dt

yd
m

dt

dV
mamF

y

yy ===  and 
2

2

dt

zd
m

dt

dV
mamF z

zz === . 

• If the motion is known relative to an inertial frame of reference, we can easily get the resultant 

force acting on the particle from the above examinations. 

• The inverse of this—determination of the motion, given the resultant force F—is not so simple. 

• Let us begin with rectilinear translation in which the resultant force F has the same direction 

and line of action at all times. 

Rectilinear Translation 
Consider a body of mass m, executing rectilinear motion along x-axis as shown in Fig. 22. Then the 

Newton’s second law can be written as 

.
2

2

dt

xd
mF =  
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Figure 22 

In the above, F can be  

• a constant,  

• a function of time t,  

• a function of speed,  

• a function of position, or 

• a combination of the above. 

1.  FORCE IS A FUNCTION OF TIME OR A CONSTANT 

Consider Fig. 22 again. The body of mass m is subjected to a force F(t). The plane on which the 

body moves is assumed to be frictionless. The force of gravity is balanced by the normal reaction. 

Hence, 

2

2

)(
dt

xd
mtF =  

or 

m

tF

dt

xd )(
2

2

= . 

In the above,  

• if x (t) is known, we can easily find F (t). 

• if F (t) is known, we need to integrate to obtain the motion. Thus 

.
)(

m

tF

dt

dx

dt

d
=








 

Integrating both sides, we get 

∫ +== .
)(

1Cdt
m

tF
V

dt

dx
 

Integrating the above once again yields 

21

)(
)( CtCdtdt

m

tF
tx ++




= ∫ ∫ , 

where the constants of integration C1 and C2 are obtained from the initial conditions at t = t0, x = x0 

and V = V0. The above holds good even if F (t) is a constant. 

Ex: 11 A box weighing 500 N is sliding down an incline as shown. µd = 0.4. (a) Find the time 

needed for the block to pick up a speed of 10 m/s. (b) What distance will the mass would have 

travelled by then? 

 

Figure 23 
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From the free body diagram shown in Fig. 23, we have N = 500 cos 45. Summing up forces along 

the x-direction, we obtain the equation of motion as 

0
81.9

500

2

500

2

500
4.0 =+−× a , 

from which we obtain 2m/s  162.4== xa �� . Integrating once, we get 

1162.4 Ctx +=� .         [A] 

The constant C1 can be obtained using the initial condition that at t = 0, 0=x� . Therefore, C1 = 0. 

Integrating once again we get  

2

2

2
162.4 C

t
x +=�          [B] 

The constant C2 is obtained using the initial condition that at t = 0, x = 0. Therefore, C2 = 0. 

The time t needed to reach a velocity of 10 m/s can be calculated from [A] as t = 10/4.162 = 2.403 

s. The corresponding distance can be obtained from [B] as x(t) = 12.013 m. 

Ex: 12 A rigid body of mass m is acted upon by a force F = A cos ω t. Determine x and V if x (t = 

0) = V(t = 0) = 0. 

We have tAxm ωcos=�� . Integrating once, we get 1sin Ct
mω

A
x += ω� .  

Integrating once again yields 

212
cos CtCt

m

A
x ++−= ω

ω
. 

Using the boundary conditions x (t = 0) = V(t = 0) = 0, we obtain C1 = 0 and C2 = A/mω2
. Thus, the 

solution is 

)cos1()(
2

t
m

A
tx ω

ω
−= . 

Note: Consider a particle of mass m acted on by force F. The linear momentum is defined as P = 

mV(t). Newton’s second law: the rate of change of linear momentum of a particle equals the sum 

of forces acting on it. That is d/dt (mV) = F. 

2. FORCE AS A FUNCTION OF SPEED 

Examples are: the aerodynamic drag force on an aircraft, or hydrodynamic forces on a towed body 

under water. The Newton’s law can be written as 

)(VF
dt

dV
m = . 

The above can be rearranged into 

dt
mVF

dV 1

)(
=  

which on integration yields 

∫ += 1
)(

C
m

t

VF

dV
, 

which gives V as a function of t . 

Ex: 13 A race car runs at a speed of 200 km/hr. The aerodynamic drag force can be approximated 

as 0.18 V
2
, where V is the speed in m/s. If the weight of the car is 30 kN, determine the distance the 

car would have moved by the time the speed drops to 150 km/hr, if the engine is shut down. 
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1 km/hr = 1000/3600 = 0.2778 m/s. Hence, 200 km/hr = 55.556 m/s and 150 km/hr = 41.667 m/s. 

The mass of the car is m = 30×10
3
/9.81 = 3058.1 kg. 

Newton’s Law can be written as 

m

V

m

VF

dt

dV 218.0)( −
== , 

which on rearranging yields 

dt
mV

dV 18.0
2

−
= . 

Integrating the above, we get 

1

18.01
Ct

mV
+−=− .             [A] 

Let t = 0 when V = 55.556 m/s. Therefore C1= −1/55.5556. Rewriting the above equation as 

5556.55

181.0
−

−
=− t

mdx

dt
, 

and rearranging it as 

dx

t
m

dt
=

+
556.55

1
 

18.0
. 

The above is of form dt/(at + b), which on integrating leads to 

2
1.3058

18.0

556.55

1

3058.1

0.18
ln C

x
t +=




 + . 

As at t = 0, x = 0, we get C2 = ln (1/55.556). Hence, we have 

xt +=







×






 +
1.3058

18.0
556.55

556.55

1

1.3058

18.0
ln .                   [B] 

From [A], when V = 14.667 m/s, we get t = 101.93. And from [B] corresponding to this time, we 

get x = 4887.558 m. 

3. FORCE AS A FUNCTION OF POSITION 

Example is a spring mass system shown in Fig. 24. 

 

Figure 24 

Newton’s law can be written as 

).(xF
dt

dV
m =  

We cannot separate the variables here. However, we have 

dx

dV
mV

dt

dx

dx

dV
m

dt

dV
m == . 

Therefore, we can write 

x 
 k 

y 
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)(xF
dx

dV
mV = , 

which can be rearranged and integrated to obtain 

1

2

)()(
2

CxdxF
mV

+= ∫ . 

Ex: 14 Determine x(t) of the mass spring system shown in Fig. 24 if the mass is pulled to the right 

and released. 

From Newton’s law, we have  

0=+ kx
dt

dV
m , 

which can be rearrange to get 

kx
dx

dV
mV −= . 

The above on integration yields 

1

22

22
C

kxmV
+

−
= . 

Alternatively, 0=+ kxxm ��  is the equation of motion which is a homogeneous second order ordinary 

differential equation. Its general solution (which is same as the complementary function) is given 

by 

tBtAtx ωω sincos)( += . 

Differentiating the above, we obtain the velocity as 

tBtAxV ωωωω cossin +−== � . 

Using eh initial conditions at t = 0, x = x0, V = V0, we get 

A = x0 and B = V0, where ω = (k/m)
1/2

. 

Ex 15 Consider the spring mass system shown in Fig. 25 with M = 200 kg and k = 50 N/mm. (a) If 

released slowly; what distance down the incline will the mass move to reach equilibrium? (b) If 

released suddenly, what speed will it acquire as it reaches the above equilibrium position?  

      

Figure 25 

From Newton’s law:  

30sinmgkxxm =+��  or 5.081.9200105200 3 ××=×+ xx�� , 

which can be rewritten as 

905.4250 =+ xx�� . 

The solution of the above second order differential equation is 

250

905.4
cossin)( ++= tBtAtx ωω , 

 mg
 

30
o 

k x 

R 

m x 

x 
.. 

.. 

x 

30o 

 k 

y 
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which represents the displacement of the block. The last term of the above (= 0.01962 m) 

represents the static deflection (which is the particular solution of the given nonhomogeneous 

equation) which represents the answer to (a). The natural frequency of the system is ω = √250.  

The velocity of the block is obtained by differentiating the above to get 

tBtAx ωωωω sincos −=� . 

Using the initial conditions at t = 0, x = 0 and x� =0, we get A = 0 and B = −0.01962. Thus, the final 

solution is given by 

)cos1(01962.0)( ttx ω−= . 

Hence, the time needed to reach the static equilibrium position is 

1.0
01962.0

=
=x

t s, 

and the corresponding speed is 

)1.0250(sin25001962.0)1.0( ×−=x� =0.3102 m/s. 

NEWTON'S LAW FOR CYLINDRICAL COORDINATES 

The Newton’s law for cylindrical coordinates can be written as 

)( 2θ��� RRmFR −= , 

)2( θθθ RRmF ��� += , 

and 

zmFz
��= . 

• If the motion is known, we can easily determine the force components. 

• If the force components are known, it is extremely difficult to solve for the motion as the 

equations are nonlinear. 

Ex: 16 A platform as shown in Fig. 26 has a constant angular velocity ω = 5 rad/s. A block B of 

mass 2 kg slides in a frictionless chute attached to the platform and is connected to the end of a 

very light spring of constant k = 20 N/m. When the block B is at r = 100mm, the spring is 

unstretched. If the mass B is released at r = 300mm from a stationary position relative to the 

platform, what is its speed relative to the platform when it has moved to r = 400 mm? What is the 

transverse force on the body B at this position? 

From Newton’s Laws along the radial direction, we have 

( ) ( )1.02 −−=−= rkrrmFr θ��� . 

That is ( ) ( )1.020252 −−=− rrr�� , which can be simplified further as 115 += rr�� . Now,  

115 +==== r
dr

dV
V

dt

dr

dr

dV

dt

dV
r r

r
rr

�� . 

Rearranging the above, we obtain 

drrdVV rr )115( += , 

which on Integration yields 

1

22

2

15

2
Cr

rVr ++= . 

Now, Vr = 0 at r = 0.3 m. Therefore, C1 = −0.975. Hence we can write 

95.1215 22 −+= rrVr . 
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Figure 26 

Consequently, when r = 0.2 m, Vr = 1.118 m/s. The corresponding transverse force is given by 

( )θθθ
���� rrmF 2+=  = 22.361 N. 

Newton's Law for Path Variables 

Newton’s law in terms of the path variables can be written as 

2

2

dt

sd
mFt =  

and 

R

dt

ds

mFn

2










= . 

Although the former is a linear differential equation, the latter is nonlinear. 

 

Ex: 16 (as 12.120) A skier is moving down the hill at a speed of 30 ms/hr, when he is at the 

position shown in Fig. 27. If he weighs 180 lb, what total force does he exert on the snow surface? 

Assume that the coefficient of friction in 0.1. The hill is parabolic. 

   
Figure 27 

The equation of the parabola is: y = a x
2
. As at x = 50′, y = 20′, a = 0.008. The derivatives are  y′ = 

2 a x, and y″ = 2 a. Therefore, the curvature at the point is 

( )( )
007618.0

'1

"1
2/32

=
+

=
y

y

R
. 

Now, since 

78086.0cos;'tan == θθ y ; and 
260

528030×
=

dt

ds
ft/s, 

we obtain (from the free body diagram shown in Fig. 27) 

001.223
1

2.32

180
cos180cos

22

=






×+=






+=
dt

ds

Rdt

ds

R

m
mgN θθ  lb. 

And hence, the resultant force exerted by skier on the ground is obtained as 

md
 2 

s/dt
 2
 

N 

µN 

mg 
m(ds/dt)

 2
/R 

x 
50′ 

20′ 

y 

 B
 

 ω 

 C
 

 r
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( ) =+= 22
NNFR µ 224.112 lb. 

Exercise 1: A block A of mass 20 kg rests on another block of mass 12 kg as shown in Fig. E1. A 

force of 150 N is applied on the block A as shown. If µd between A and B is 0.6 and that between B 

and the ground is 0.12, determine the relative speed of A with respect to B at t = 0.2s if the system 

starts from the rest. 

           

                                              Figure E1                                     Figure E2 

Exercise 2: A circular room revolves at ω when the floor is suddenly depressed as shown in Fig. 

E2. If the occupants standing close to the walls were to remain glued to the wall, what is the 

minimum angular velocity ω? µs = 0.4. [Answer: ω = 27.3 rpm = 2.859rad/s.] 

Exercise 3: A conical pendulum of length 1 m is made to rotate at a constant angular speed of 5 

rad/s, about the vertical axis as depicted in Fig. E3. Determine the tension in the chord if the mass 

of the pendulum bob in 0.5 kg. What is ?θ  [Answer: T = 12.5N, .9.66 o=θ ] 

                        
                       Figure E3                               Figure E4                              Figure E5 

Exercise 4: A fly-ball governor B as shown in Fig. E4 is subjected to a pull of p = 150N. If the 

balls are each of weight 100N, what is the angular velocity required to maintain the configuration 

shown. In Fig. E4 (i.e., with θ = 30
o
. 

Exercise 5: A horizontal platform rotates at a constant angular speed of 5 rad/s. Fixed to the 

platform is a friction less chute in which two identical masses each of 2 kg are constrained by a 

pair of identical linear springs of k = 250 N/m. If the unstretched length of each spring is 0.18 m, 

show that at steady state θ = 36.81
o
. The springs are fixed to the platform at A. 

A System of Particles 

The General Motion of a System of Particles 

Consider a system of particles as depicted in Fig. 28 that have interactions between one another. 

The interaction forces obey Newton’s 3
rd

 law, (i.e. they are equal and opposite). 

 
Figure 28 

For particle “i”, Newton’s second law can be written as 
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∑
≠
=

+=
n

ij
j

jii
i

i
dt

d
m

1
2

2

fF
r

, 

where Fi is the external force acting on i
th

 particle, fij is the force on particle i from particle j. 

Moreover, it follows from Newton’s third law that fij = − fji. Writing the above equation for each of 

the particles, and summing up we obtain 

∑∑∑∑
= ===

+=
n

i

n

j

ij

n

i

i

n

i

ii F
dt

d
m

1 111
2

2

fr , 

which can be simplified to obtain 











== ∑∑

==

n

i

ii

n

i

i m
dt

d

1
2

2

1

rFF . 

The quantity Σi mi ri is defined as the first moment of mass of the system of particles. Thus, if 
cr is 

the position vector of the centre of mass, as depicted in Fig. 29, then we have 

∑
=

=
n

i

iic mM
1

rr , 

where ∑
=

=
n

i

imM
1

 is the total mass of the system of particles. 

 
Figure 29 

Thus, we can write the Newton’s law for the system of particles as 

2

2

2

2

dt

d
MM

dt

d c
c

r
rF == . 

In the above, F is the total force acting on all the particles. This equation implies that the system of 

particles could be considered as if it is a single particle of mass M situated at the centre of mass 

with position vector rc. 

Ex: 17 An astronaut on a space walk pulls a man A of 150 kg towards him and shortens the 

distance d by 3 m. If the weight of the astronaut is 700 N on earth, how far does the mass A move 

from its original position? The cord may be treated as massless. 

Figure 30 
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Taking moments of mass about A, we get 

( ) ( ) dgxg /700/700150 =+ .         [A] 

Now, taking moments about A again, but in the new position, we obtain 

( ) ( ) )3(/700/700150 1 −=+ dgxg .             [B] 

Subtracting [B] from [A] yields the answer as 

( )g
xx

/70015081.9

3700
1 +

×
=− = 0.967 m. 

Exercise: 5 Three bodies have the weights 50 N, 20 N and 30 N respectively. Their positions at 

time t are given below: 

















=

2

3

5

1r m,  
















−

=

4

0

4

2r m, and 
















=

3

0

0

3r m. 

Determine the position of centre of mass at time t. What is the velocity of the centre of mass if the 

velocity of each body is: 

















−=

0

2

3

1V m/s, 
















=

1

5

0

2V m/s, and 
















=

0

0

4

3V m/s. 

If the following external forces act on the particles:  

















=

8

0

5

1F N, 0F =2 , and 

















−

=

8

2

3

3

t

F N, 

where t is the time in seconds. What is the acceleration of the centre of mass? What is its position 

after 5 sec from that given initially? 

 


