Important Instructions: READ THESE BEFORE ANYTHING ELSE!

- Answer all questions. Read questions carefully before attempting to answer.
- Use the concepts from Module 2 to solve the problems.
- Each question carries 4 marks.

1 Blocks A and B weighing 2 kN each are connected by an inextensible flexible cable, with the block A being attached to the wall by a spring having a spring constant of $K=50 \mathrm{~N} / \mathrm{m}$ as depicted in Fig. 1. The blocks are released from a rest configuration with the cable being taut. If block B can only fall by 50 mm , what is the velocity of block A after it has moved a distance of 75 mm ? The coefficient of dynamic friction between block A and the floor is 0.2 .

Figure 1

Figure 2

Figure 3

2 The system shown in Fig. 2 is released from rest where the cylinder D rolls without slipping. What is the speed of the system after moving 0.2 m down the incline? Also ascertain the frictional force between the ground and the cylinder. Neglect the weight of $\operatorname{rod} A B$. The spring is originally unstretched. Data: $m_{D}=50 \mathrm{~kg}, m_{C}=20 \mathrm{~kg}, K=$ $100 \mathrm{~N} / \mathrm{m}$, and μ_{d} between block C and the ground is 0.4 .
3 A ballistic test consists of the setup shown in Fig. 3. The coefficient of friction between the 100 kg gun-platform system and the ground is $\mu_{d}=0.7$. Determine (a) the speed of the platform $\left(V_{p 1}\right)$ just after the gun fires a 0.05 kg bullet at a muzzle velocity of $1000 \mathrm{~m} / \mathrm{s}$, and (b) the distance Δx_{p} travelled by the platform before the bullet strikes the target screen at A.
4 A small sphere A attached to a cord $A C$ is released from rest in the position shown in Fig. 4 and hits an identical sphere B hanging from a vertical cord $B D$. If the maximum angle θ_{B} formed by cord $B D$ with the vertical in the subsequent motion of sphere B is to be equal to the angle θ_{A}, determine the required value of the ratio l_{B} / l_{A} of the lengths of the two cords in terms of the coefficient of restitution e between the two spheres.

Figure 4

Figure 5a

Figure 5b

5 (a) The two small spheres each of mass m and the connecting rod of negligible mass are lying in the $x y$-plane, and are rotating about their mass centre G with an angular velocity of ω, as shown in Fig. 5a. At the same instant of time the mass centre has a velocity of \mathbf{V} in the x-direction. Determine the moment of momentum \mathbf{H}_{o} of the assembly at the instant about the origin O when G has coordinates x and y.
(b) The four 3 kg balls shown in Fig. 5 b are rigidly mounted to the rotating frame and shaft which are initially rotating freely about the vertical z-axis at the angular speed of $20 \mathrm{rad} / \mathrm{s}$ clockwise when viewed from above. If a constant torque $M=30 \mathrm{Nm}$ is applied to the shaft, calculate the time t needed to reverse the direction of rotation and reach the angular speed of $20 \mathrm{rad} / \mathrm{s}$ in the same sense as M.

