\qquad
Monsoon Semester 2022
Mid-Sem Exam, 11 Oct 2022
CE6101D Theory of Elasticity and Plasticity
Duration: 2 hours
Maximum Marks: [30]
Note: Answer all questions; Provide neat sketches; Assume missing data; Read questions carefully

1. Derive the force and moment equations of equilibrium of a body subjected to body forces and surface forces.
2. At a point in a body, the stress tensor with respect to $x y z$ coordinates is given by

$$
\sigma=\left[\begin{array}{rrr}
30 & -10 & 20 \\
-10 & 40 & 15 \\
20 & 15 & 50
\end{array}\right] \mathrm{MPa} .
$$

Find: (a) The normal and shear stresses at the point on a plane whose outward normal is $\mathbf{n}=0.4 \mathbf{i}$ $+0.6 \mathbf{j}-0.69282 \mathbf{k}$; and (b) The stress invariants and the principal stresses at the point.
3. The stress distribution in an elastic body in MPa is described by the following stress components

$$
\sigma_{y}=3 y z+2 y^{2} ; \sigma_{z}=10\left(z^{2}-y z\right) ; \tau_{y z}=3\left(y^{2}+z-10\right) ; \text { and } \sigma_{x}=\tau_{x z}=\tau_{x y}=0
$$

Evaluate the distribution of body forces \mathbf{b} necessary to keep the above stress field in equilibrium. (Hint: Use the equations of equilibrium)
4. Derive the strain-displacement relations for the normal strain ε_{z} and shearing strain $\gamma_{y z}$.
5. (a) For a homogeneous isotropic linearly elastic body write the following in index notation: (i) the equations of equilibrium, (ii) stress-strain relations and (ii) strain-displacement relations.
(b) Combine them to obtain the equations of equilibrium in terms of displacements.
6. The compatibility equation is given by

$$
\varepsilon_{i j}, k l+\varepsilon_{k l},{ }_{i j}-\varepsilon_{i k},{ }_{j l}-\varepsilon_{j l},{ }_{i k}=0 .
$$

Use it to obtain the corresponding six compatibility conditions in longhand notation.
7. (a) Define an isotropic tensor? (b) Write the transformation rule for a fourth order tensor.
(c) Use it to show that the fourth order tensor $D_{i j k l}=\alpha \delta_{i j} \delta_{k l}+\beta \delta_{i k} \delta_{j l}+\gamma \delta_{i l} \delta_{j k}$ is isotropic. [4]
8. If \mathbf{A} and \mathbf{B} are square matrices (of size 3) and $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are vectors, denote the following using index notation: (i) $\mathbf{X} \cdot \mathbf{Y}$, (ii) $\mathbf{X} \times \mathbf{Y}$, (iii) $\mathbf{X} \times \mathbf{Y} \cdot \mathbf{Z}$, (iv) $\mathbf{X}^{\mathrm{T}}(\mathbf{A}+\mathbf{B}) \mathbf{X}$ and (v) $(\mathbf{X} \times \mathbf{Y}) \cdot(\mathbf{Y} \times \mathbf{Z})$.
~0O0000000~

