national Institute of Technology Calicut

CE2008D STRUCTURAL ANALYSIS I

Winter 2019-20
Interim Test - 21 Feb 2020

Answer all questions; Provide neat sketches; Assume missing data after stating; Read the questions carefully

1. A short column has a hollow circular cross-section with outside diameter 150 mm and inside diameter 130 mm . If a compressive load $P=200 \mathrm{kN}$ acts eccentrically at the middle thickness of the wall as shown in Fig. 1, find the maximum and minimum stresses developed.
2. (a) A hinged-hinged column carries an axial compressive load P. Write the governing differential equation and the boundary conditions. Solve and determine the critical load.
(b) If a hinged-hinged column is 6 m long, has an I-section with $I_{x x}=6.5 \times 10^{8} \mathrm{~mm}^{4}$ and $I_{y y}=1.8 \times 10^{7}$ mm^{4}, calculate the Euler buckling load. $E=200 \mathrm{GPa}$.

Figure 1

Figure 2
3. Find the horizontal deflection and rotation of joint B of the plane frame shown loaded as in Fig. 2 using the unit load method. Given: $E=200 \mathrm{GPa}$ and $I=5 \times 10^{8} \mathrm{~mm}^{4}$. Note the different $E I$ values.
4. For the beam shown in Fig. 3, calculate the slope and deflection at C using the strain energy method. Note the different $E I$ values. Given: $E=200 \mathrm{GPa} ; I=8 \times 10^{7} \mathrm{~mm}^{4}$.

Figure 3

Figure 4
5. For the truss shown in Fig. 4, the cross-sectional area of each bar is $10^{-4} \mathrm{~m}^{2}$ and $E=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$:
(a) Find the vertical deflection at A due to the loads shown using the unit load method.
(b) Find the vertical deflection at A of the truss with no loads if the temperature of the members $A D$ and $D E$ are increased by $60^{\circ} \mathrm{C}$. The coefficient of thermal expansion is $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

