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ZZU102 ENGINEERING MECHANICS II—DYNAMICS 
 

M O D U L E   2 

 

Energy Methods for Particles 
 

Analysis for a single particle 

Certain problems can be easily solved by the method of energy. Consider Fig. 2.1 in which XYZ 

represents an inertial frame of reference. 

 t 

Figure 2.1 

Newton’s second law can be written as 
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Take dot products on both sides of the above equation with d r and integrate from position 1 to 2 to 

get 
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Note the change of variable from r to t in the last term. We can rearrange the integrand of the last 

term as 
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which can be rewritten as 
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In the above equation, the left hand side integral denoted by W1−2, is the work integral 
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and, in general, depends on the path between r1 and r2 and is known as a path function. However, 

the right hand side integral involves the kinetic energy (= ½ mV
 2

) depends on the instantaneous 

state of motion of the particle and is therefore a point function, and is dependent of the path. 

The above equation is valid for, 

• a single particle, 

• a system of particles: (then, the centre of mass is relevant), 

• a rigid body in translation, and 

• a body whose size is small when compared to its trajectory. In such a case, however, 

the velocity and acceleration of the centre of mass may be quite different from those of 

the other points. 

Now, consider a component of Newton’s law in one direction, say the x-direction. Then, we can 

write 

ii
dt

dV
mF x

x = . 

Taking dot product of the above equation with dr = dx i + dy j + dz k, we obtain 
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That is, the work done on a particle in any direction equals the change in kinetic energy associated 

with the component of velocity in that direction. 

• It is advantageous to employ the energy principle when velocities are desired and 

forces are functions of positions. 

• Any problem solved by Newton’s law, can also be solved by the energy method. 

• The choice of the method depends on convenience. 

Ex: 2.1 A car is moving at the 60 km/hr when the driver jammed on his brakes. What distance will 

the car skid before stopping if the coefficient of dynamic friction, µd = 0.6 between the tyre and 

road? The weight of the car is 160 kN. 

 

Figure 2.2 

See Fig. 2.2. The frictional force is given by f =µ N = 0.6×160×10
3
 N. Equating the work done to 

the change in kinetic energy, we obtain 

−0.6×16×10
3× d = 

2

1
m 0

2−
2

1
mV1

2
 

As m = 16×10
3
/9.81, we obtain the distance d = 23.6 m. 

Ex: 2.2 If the system shown in Fig. 2.3 is released from rest, what is the speed at which W2 hits the 

ground? W1=250 N, W2 = 200 N, and µ = 0.3. 

W 

 N 
f=µN 
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Figure 2.3 

A. Direct solution using Newton’s law: 

Consider the two free body diagrams shown in Fig. 2.4. Using D’Alembert’s concept of the inertia 

force, the (fictitious) inertia forces are marked by dotted arrows in the figure.  

 

Figure 2.4 

Consider the first free body diagram. Writing the dynamic equation of equilibrium, we get 

a
g

T
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200 −= . 

From the second free body diagram, we again get 

a
g

a
g

T
200

200
250

75 −=+= , 

from which we get the acceleration as, a = 2.7242 m/s
2
 and the tension in the cord as, T = 144.4 N. 

Integrating the acceleration, we obtain the velocity as 

CtV += 7242.2 , 

As at t = 0, V = 0, we have C = 0. Integrating the above once again, we get the displacement of 

block W2 as 

y = 2.7242 t
2
/2 + D 

At t = 0, y = 0, we have D = 0. Time to reach ground: 100=y mm = 0.1m, therefore, t = 0.2709s, 

and V (t) = 0.738 m/s. 

B. Using work-kinetic energy equation: 

Equating the work done to the change in kinetic energy, we get 

2200250
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






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from which we get the velocity directly as V = 0.738 m/s. 
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Power Considerations 

Power is the rate of performing work. That is 

Power = 1

1

n

i i n
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= =
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F V
W
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where Vi is the velocity of the point of application of the i
th

 force. 

Ex: 2.3 A collar having a mass of 5 kg can slide without friction on a pipe as depicted in Fig. 2.5. 

If released from rest at the position shown where the spring is unstretched, what speed will the col-

lar have after moving 50 mm?  K = 2000 N/m. 

 

Figure 2.5 

Stretch of the spring ac − ab = 29.129 mm. Writing the work-energy equation, we obtain 

22 5
2

1
2000

2

1
81.9530sin

1000

50
00 Vx ××=××−××++ ,  

from which we obtain the solution as V = 0.3885 m/s. 

Ex: 2.4 If the system shown in Fig. 2.6 is released from rest, with what speed will block B hit the 

ground? 

 
Figure 2.6 

Since the length of the cord remains unchanged, we can write 

Cll BA =+2 . 

Therefore, it follows that 

02 =+ BA ll �� , 

from which we get the relationship between the velocities of the block. 

AA Vl −=�  and BB Vl =� . 

Using this relation and knowing other data, it is a straightforward exercise to complete this prob-

lem using the energy method. 

Conservative Force Fields 

Consider a body acted only by gravity force W as an active force and moving along a frictionless 

path from position 1 to position 2 as shown in Fig. 2.7. The work done by gravity can be written as 

30o 

K
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( ) ( )
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d W d W dy W y y• •− = = − = − = −∫ ∫ ∫F r j rW . 

The work done does not depend on the path, but depends only on the end points 1and 2. Force 

fields which depend only on end positions and are independent of the path are called conservative 

force fields. 

For a conservative force field F(x, y, z), the work done as it moves from 1 to 2 can be written as 
2

1 2 1 2

1

( , , ) ( , , )d V x y z V x y z•− = = −∫F rW , 

where V is a scalar function evaluated at the end points called potential (energy) function. 

The change in potential ∆V is the negative of work done by this force field in going from position 1 

to 2. For a closed path: 0.d• =∫ F r�  

 
Figure 2.7 

Consider an arbitrary infinitesimal path segment dr stating from 1. Then, for the above to hold 

good, we need d dV• = −F r . This can be rewritten as 


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For the above equation to hold good, we have Fi = −∂V/∂xi, i = 1, 2, 3, or F = − grad V = − ∇∇∇∇V, 

where 

( ) ( ) ( ) ( )kji
zyx ∂

∂
+

∂

∂
+

∂

∂
=∇  

is the gradient operator. 

Thus, a conservative force field must be a function of position, and must be expressible as the gra-

dient of a scalar function. Or, if a force F is a function of position and can be expressed as the gra-

dient of a scalar field, it must be a conservative force. 

CONSTANT FORCE FIELD: 

If the force field is constant at all positions, it can be represented as the gradient of the scalar func-

tion (the potential function) V = −(ax + by + cz). Hence, we have F = − ∇∇∇∇V = a i + b j + c k. An 

example for this is the gravitational field F= −mgk. Then V = mgz. 

FORCE PROPORTIONAL TO LINEAR DISPLACEMENTS: 

If F = − K x i, then the potential function is V = ½ Kx
2
 so that F = − ∇∇∇∇V. The reader will recall that 

such a force field can be produced by a linear spring of having a spring constant K. 

Conservation of Mechanical Energy 

Consider the motion of a particle subjected to a conservative force field. We have seen that 

2

1

2 2

2 1
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Moreover, for a conservative field we can also write 

( ) ( )
2

1

1 2
PE PEd• = −∫

r

r

F r , 

where (PE)i represents the potential energy function at the i-th stage (i = 1 or 2). From the above 

two equations, equating the right hand sides, we get  

(PE)1 − (PE)2 =  (KE)2 − (KE)1, 

where (KE) is the kinetic energy of the particle. The above equation can be rearranged to yield 

(PE)1 + (KE)1 =  (PE)2 + (KE)2, 

or the total energy = (PE) + (KE) = a constant. This is the law of conservation of mechanical en-

ergy for a conservative system. 

Ex: 2.5 A particle is dropped from rest down a frictionless chute as shown in Fig. 2.8. What is the 

velocity as it falls down by h? 

 
Figure 2.8 

The work-energy equation can be written as 

2

2

1
00 mVmgh +=+ , 

from which we obtain the answer as ghV 2= . 

Ex: 2.6 A block of mass m is dropped on to a spring as shown in Fig. 2.9. What is δmax?  

 

Figure 2.9 

At δmax, V = 0. Therefore, mg(h + δmax) + 0 = ½ K δmax
2
. Solve this quadratic equation for δmax. 

Ex: 2.7 A vehicle of mass 1800kg is being transported in a rail rod car as shown in Fig. 2.10. The 

spring constant K= 20 kN/m. If the rail road car is stopped all of a sudden, what is the maximum 

spring force developed? 

Writing the work-energy equation 

2

2

2

1

3600

5000
1800

2

1
xK=








×× , 

from which we get x = 0.4166 m. Therefore, the force in the spring = Kx = 8333.33 N 

h 

1 

2 

δmax 
h 

 K 
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Figure 2.10 

Ex: 2.8 In Fig. 2.11, the spring is nonlinear with spring force of 0.06x
2
. If the block of weight W = 

225 N is suddenly released from rest, what is the maximum deflection of the spring? 

 

Figure 2.11 

From work-energy equation, we have 

006.0
0

2 =+− ∫
δ

δ dxxW , 

from which we obtain δ = 106.067 mm. 

Ex: 2.9 Is the following force field conservative? (a) ( ) ( ) .
2

15
101510

2

kjiF 







+++++=

y
xxyzyz  

If F = − ∇∇∇∇V, curl F = 0. Thus, in order to check whether a given force field is conservative, we 

need to just check whether curl F = 0. 

  

2

curl 

15
10 15 10

2

x y z

y
z y yz x x

∂ ∂ ∂
=

∂ ∂ ∂

+ + +

i j k

F  

(15 15 ) (10 10) (1 1)y y= − + − + − =i j k 0 . 

Therefore F is conservative. 

Alternative Form of Work-Energy Equation 

We shall see an alternative energy equation which resembles the first law of thermodynamics, and 

which has much physical appeal. Consider the case where certain of the forces acting on a particle 

are conservative while others are not. Recall that for conservative forces the negative of the change 

in potential energy between positions 1 and 2 equals the work done by these (conservative) forces 

as the particles goes from 1 to 2, along any path. We can thus write 

( ) ( )
2

1,2 1,2

1

PE KEd ∆ ∆• − =∫F r , 

5 km/hr 

W 

δmax 

k 
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where the integral represents the work of the nonconservative forces; the operator ∆ represents the 

final state minus the initial state. Calling this integral W1−2 we have:  

∆(KE + PE) = W1−2. 

Thus the work of the nonconservative forces goes into changing the total energy (= KE + PE) of 

the particle. 

Ex: 2.10 When the 1000 N block of Fig. 2.12 slides down by 2m, what velocity will it require? 

 

Figure 2.12 

Writing the alternative form of the work-energy equation, viz. ∆(KE + PE) = W1−2, and applying 

the data of the problem, we have 

220cos3002.0
81.9

1300

2

1
2100020sin2300

2 ××−=







+×−× V , 

the solution of which provides the answer V = 5.0384 m/s. 

Ex: 2.11 A body A is released from rest on a vertical circular path as shown in Fig. 2.13. If a con-

stant resistance force of 1 N acts along the path, what is the speed of the body when it reaches B? 

The mass of A is 0.5kg and r = 1.6 m. 

 

Figure 2.13 

From the work-energy equation, we have 

( )( ) ( )
6

6.1105.030sin60sin6.15.00 2

2
1

π
×=−+−×××− Vg , 

from which we get the solution as V = 2.8523 m/s. 

Ex: 2.12 A 10kN car starts from rest at A and moves without friction down the track shown in Fig. 

2.14. (a) Determine the force exerted by the track on the car at point B, where the radius of the cur-

vature is 7m; and (b) determine the minimum safe value of the radius of curvature at C. 

First find VB and VC using the energy method. Then using the free body diagrams corresponding to 

positions B and C, write the equations of motion to obtain NB and RC (such that NC = 0). 

300 N 

2m 

 µd=0.2 

2 m 

1000 N 

20o 

Inextensible 

Frictionless pulley 

0.5g 
A 

B 
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Figure 2.14 

Ex: 2.13 A spring is used to stop a 60 kg package which is sliding on a horizontal surface as de-

picted in Fig. 2.15. The spring count k = 20 kN/m, and is held by cables so that it is initially com-

pressed 120 mm. Knowing that the package has a velocity of 2.5 m/s in the position shown and that 

the maximum additional deflection of the spring is 40 mm, determine (a) µd between the package 

and surface, and (b) the velocity of the package as it passes again through the position shown. 

 
Figure 2.15 

(a) From position A to B: 

( ) ( )23

2
123

2
12

2
1 120.01020160.010205.2600 ×××−×××+××− 640.081.960 ×××= dµ , 

from which we get µd = 0.2. 

(b) From position B to A: 

( ) ( )23

2
123

2
12

2
1 160.01020120.01020060 ×××−×××+−×× V 640.081.9602.0 ×××= , 

which yields the solution of V = 1.105 m/s. 

System of Particles: Work energy Equation 

Consider a system of n particles as shown in Fig. 2.16. We can write the work-energy equation for 

the i
th

 particle as 

 
Figure 2.16 

( ) ( )
2 2

2 21 1
2 22

11 1

n

i i ij i i i i i

j
j i

d d mV mV• •

=
≠

 
 

+ = − 
 
 

∑∫ ∫F r f r ,                                    [A] 

where Fi is the external force acting on the i
th

 particle, and fij is the force exerted by the j
th

 particle 

on the i
th

 particle. The above equation can be written as 

External Work +Internal Work = Change in Kinetic Energy relative to XYZ          [B] 

Y 

Z 

X 

mi 

i Fi fij 

 j 

 A  B 
 2.5 m/s 

600 mm 

7 m 

C 

5 m
 

B 

15 m
 

A 

NB 

W 

At B: 

VB
2
/RB 

NC = 0 

W 

At C: 

VC
2/RC 
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for a displacement between r1 and r2 along some path. Moreover, we can identify conservative 

forces, both external internal, and utilise the potential energies for these forces. We can thus sum 

equation [A] for all particles; however, even though fij = − fji, the work done due to these two equal 

and opposite forces may not cancel off as the movements may not be the same. On the other hand, 

in the case of rigid bodies, the internal work is zero. In the case of system of rigid bodies intercon-

nected by pin or ball joints, if no friction exists; there will be no internal work. Thus, for a system 

of particles, w can write 

( ) 21PEKE −=+∆ W , 

where W1−2 represents the work done by both the external and internal nonconservative forces and 

PE represents the total potential energy of conservative internal and external forces. 

Important Note: 

• Work done due to each force is due to the movement of the point of application of the 

force. That is, the forces move with their points of applications. 

• Both internal and external forces may be conservative or nonconservative. 

• Kinetic energy must be the total kinetic energy and not just that of the centre of mass. 

 

Figure 2.17 

If there are several particles situated at different heights zi as depicted in Fig. 2.17, we can write the 

potential energy of the system as 

ci

n

i

i Wzzgm ==∑
=1

PE , 

where zc is the height to the centre of gravity point (or centre of mass), if g is constant. 

Kinetic Energy Expression Based on the Centre of Mass 

Consider a system of n particles as shown in Fig. 2.18. The total kinetic energy of the system is 

given by 

∑
=

=
n

i

iiVm
1

2

2
1KE  

 
Figure 2.18 

Denoting the position vector of the centre of mass by rc, we have 

cici ρrr += . 

Differentiating the above with respect to time, we get 

Y 

Z 

X 

CM 

i 

ri 

rc 

ρρρρci 

z1 

z2 z3 zn 
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cici ρVV �+= , 

where ii rV �= , c rV �=c , and ciρ� is the velocity of the i
th

 particle relative to the centre of mass. Using 

these in the kinetic energy equation, we obtain 

( ) ( )1
2

1

KE
n

i c ci c ci

i

m •

=

= + +∑ V ρ V ρ� �
2 21 1

2 2

1 1 1

n n n

i c i c ci i ct

i i i

mV m m ρ•

= = =

= + +∑ ∑ ∑V ρ �
� �  

                          2 21 1
2 2

1 1

n n

c c i ci i ci

i i

d
M V m m ρ

dt
•

= =

 
= + + 

 
∑ ∑V ρ � , 

which boils down to 

∑
=

+=
n

i

ciic ρmVM
1

2

2
12

2
1KE � , 

as Σi mi ρρρρi , is the first moment of mass of the system about the centre of mass which is zero. Thus, 

the kinetic energy for some reference can considered to be composed of (i) the kinetic energy of 

the total mass moving relative to that reference with the velocity of the centre of mass, and (ii) the 

kinetic energy of the motion of the particles relative to the centre of mass. 

Ex: 2.14 A thin uniform hoop of radius R shown in Fig. 2.19 rolls without slipping such that O, the 

centre of mass, moves at a speed of V. If the hoop weighs W N, determine the kinetic energy of the 

hoop relative to ground. 

The kinetic energy of the hoop can be written as 

( ) massofcentretorelative

2

2
1 KEKE += V

g

W
. 

          

Figure 2.19 

The point of contact A has zero instantaneous velocity with respect to ground (due to no slipping 

condition). The hoop has a pure instantaneous rotational motion about A. The angular velocity be-

ing given by ω = V/R. As xy translates with respect to XY, an observer on xy sees the same angular 

velocity ω for the hoop as the observer on XY. Therefore, the second term in the above kinetic en-

ergy equation can be obtained as: 

(KE)relative to centre of mass  =
2

2
12

2
1

2

0

2

1
2

22
V

g

W
V

g

W
Rd

Rg

W
==








∫ π

π
θ

π

π

. 

Hence, the total kinetic energy of the hoop can be written as 

22

2
12

2
1KE V

g

W
V

g

W
V

g

W
=+= . 
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Ex: 2.15 Determine the total kinetic energy of the blocks shown in Fig. 2.20 when block B falls 

down by xB. The cord is flexible with a spring constant of K2. 

Writing the work-energy equation 

21KEPE −=∆+∆ W . 

In the above,  

( )( ) ( )00PE
2

22
12

12
1 −×−+−−+=∆ BBABA xWxxKxK , 

0KE
2

2
12

2
1 −+=∆ AAAA VmVm ,  

and 

AdA xW ××−=− µ21W . 

It is possible to calculate ∆KE knowing various data in the problem from the first equation. 

 
Figure 2.20 

Ex: 2.16 A hypothetical vehicle shown in Fig. 2.21 is moving at speed V0. There are two bodies of 

mass m each sliding along a horizontal rod at a speed of v relative to the rod. The rod is rotating at 

an angular speed of ω rad/s relative to the vehicle. Find the kinetic energy of the two bodies rela-

tive to the ground XYZ when they are at a distance r apart. 

 
Figure 2.21 

The centre of mass is A, and the kinetic energy about it is given by 

( ) 2

2
12

2
1 m2 cc VVM = . 

The velocity of each ball relative to xyz, (which translates with respect to XYZ) can be obtained us-

ing cylindrical coordinates as rr ε=r  and θεθε �� rr r +=V . Hence, 

( ) ( )22222 ωωρ rvrr +=+= �� . 

Therefore, we get the total kinetic energy as 

( )2222

0KE ωrvmVm ++= . 

VB, xB 

A 

K1 

VA, xA 

K2 

µd=0.2 

B 

X 
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x 

V0 

A 

Y 
ω 

v v 
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Work-Kinetic Energy Expression Based on Centre of Mass 

We have seen earlier that the Newton’s law for the centre of mass for a system of particles is given 

by:  

,cM rF ��=  

where F is the external force acting on the system of particles. As before, we can deduce from the 

above that 

( ) ( )
2

1 12 2

2 22 1
1

c c cd M V M V• = −∫F r . 

The external forces must all move with the centre of mass for computing the work done term. Sin-

gle particle model is a special case of the above equation. That is, the single particle model repre-

sents the case where the motion of the centre of mass of a body sufficiently describes the motion of 

the body and where the external forces on the body essentially move with the centre of mass of the 

body. 

Key features of this approach:  

• Only external forces are involved. 

• All forces move with the centre of mass while computing work done.  

• The kinetic energy of the centre of mass only is involved. 

Ex: 2.17 A cylinder of total mass M and radius R rotates about its axis with an angular speed of W. 

Determine its kinetic energy. 

The kinetic energy is obtained by considering an elemental mass dm as depicted in Fig. 2.22 to ob-

tain 

KE = 
2

2
4

)(
2

1
22242

0 0

222 ω
ρπ

ω
ρθωω

π
MR

l
R

rldrdrrdm

R

m

=== ∫ ∫∫ . 

 

Figure 2.22 

Ex: 2.18 A cylinder of mass 25 kg and diameter 0.6 m rolls without slipping as shown in Fig. 2.23. 

Find the speed after it rolls 1.6 m down the incline. Also determine the frictional force acting on 

the cylinder. 

 

Figure 2.23 

A. SYSTEM OF PARTICLES APPROACH: 

We have the work-energy equation applied to the cylinder considering it as a system of particles to 

obtain  

l 

dm r 

dr 

1.6m 
N 

f 

W 

30
o 
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( ) 21KEPE −=+∆ W , 

which leads to 

( ) 003.025
4

1
25

2

1
30sin6.1g250

222
=








−×××+×+×− ωcV . 

Note that only particles on the rim are acted upon by the external forces N and f. Each particle on 

the rim has N and f only when the particle is in contact with the surface; then the velocity of that 

point is zero. Hence the frictional force f does no work in this approach as it acts on one particle at 

an instant of time and in the next instant it is zero on that particle. The velocity of the centre of cyl-

inder, Vc, is related to the angular velocity ω by 

Vc = Rω. 

Hence, we obtain from the above that Vc = 3.23 m/s. 

B. CENTRE OF MASS APPROACH: 

Now, in order to find f, the frictional force, let us employ the centre of mass approach. Now all the 

external forces must move with the centre of mass. Thus f does work. Writing the work-energy 

equation, now considering the kinetic energy of the centre of mass alone, we obtain 

2

2

1
30sin6.1256.1 cMVgf =×+×− , 

which on substitution yields the answer f = 41.1 N. 

Ex: 2.19 An external torque T of 50 Nm is applied to a solid cylinder B as shown in Fig. 2.24 

which has a mass of 30 kg and radius of 0.2 m. The cylinder rolls without slipping. Block A having 

a mass of 20 kg is dragged up the 15
0
 inline. The coefficient of dynamic friction µd = 0.25 between 

A and the incline. Connections at C and D are frictionless. (a) What is the velocity of the system 

after moving a distance, d = 2m? (b) What is the frictional force f on the cylinder? 

  
Figure 2.24 

A. SYSTEM OF PARTICLES APPROACH:  

The pairs of forces in CD are equal and opposite, and move by the same distance; hence zero inter-

nal work. Writing the work-energy equation, we get 

∆KEPE21 +∆=−W . 

The above on substitution leads to 

( ) ( )[ ] ( ) 







−+++−+=− 0

4

1

2
015sin

22
2

BBBBABAAd rm
V

mmdWWdNT ωµθ , 

where the distance d moved by the cylinder during an angular movement θ is Rθ = d. In addition, 

V = Rω. Substitution of these in the above equation yields V = 2.158 m/s. 

15
o 

A 

B 

C 

D 

T 
A 

B 
T 

WA 

WB 

NA 

0.25NA 

f
 

NB 

C 
15
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B. CENTRE OF MASS APPROACH: 

Using the centre of mass approach, the torque T during the translation does no work. Hence, we 

obtain 

( )
2

2 2

2 1

1

1
( )

2
c A Bd m m V V• = + −∫F r . 

That is 

( ) ( )( )0
2

1
15sin25.0 2 −+=+−+− VmmdWWfddN BABAA , 

which yields the frictional force f = 232.5 N. 

Ex: 2.20 Find the angular speed of the cylinder shown in Fig. 2.25 after it rotates 20
o
 starting from 

rest. The spring is originally unstretched. The cylinder rolls down without slipping. K = 500 N/m. 

mA = 30 kg and dA = 0.4 m. 

 
Figure 2.25 

SYSTEM OF PARTICLES APPROACH:  

The work-energy equation can be written as 

( ) 21KEPE −=+∆ W , 

which yields 

030sin302

2

122

4

12

2

1 =−++ xgKxmRmV ω . 

Since V = Rω, x = Rθ = 0.2×20×π/180, we get from the above the solution as ω = 3.1718 rad/s. 

Methods of Momentum for Particles 

LINEAR MOMENTUM OF A PARTICLE 

Newton’s Law can be mathematically stated as 

( )
dt

d

dt

md PV
F == , 

where P = mV is called the linear momentum vector of the particle. 

IMPULSE AND MOMENTUM RELATIONS FOR A PARTICLE 

Multiplying both sides of the Newton’s law statement given above by dt and integrating from and 

initial time ti to a subsequent time tf, we obtain 

∫ ∫=
f

i

f

i

t

t

t

t

dt
dt

d
mdt

V
F , 

or 

∫ −=
f

i

t

t

if mmdt VVF . 

30
o 

K 

A 
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In the above, the term on the left hand side  

∫=
f

i

t

t

dtFI  

is called the impulse of the force F during the time interval ti −tf . The right hand side represents the 

change in the linear momentum vector during the time interval. That is the impulse over a time in-

terval equals the change in linear momentum of the particle during that time interval. The follow-

ing points are worth pondering upon: 

• The impulse of the force may be known even though the force itself may not be known. 

• To produce an impulse, a force needs to exit for an interval of time. Its point of application 

may not move. 

Ex: 2.21 A particle initially at rest is acted upon by a force whose variation with time is as shown 

in Fig. 2.26. If the particle has a mass of 2 kg and is constrained to move rectilinearly along the 

force, what is its velocity at 2 sec? 

 
Figure 2.26 

The impulse of the force is I = ∫
2

1

t

t

dtF = 100 Ns = mV2 − mV1 = 2×V2. Hence, V2 = 100/2 = 50 m/s. 

The impulse momentum principle is exceptionally useful when F(t) is not known mathematically 

and instead is given graphically. Then we can determine the area of the graph (using, for example, 

a planimeter), thus getting an easy and quick solution. 

Ex: 2.22 A particle of mass 1 kg is initially at rest at the origin of a reference. A force F (t) = t
2
 i + 

(6t +10) j + 1.6t
3
 k kN acts on the particle, where t is in seconds. Find the velocity after 10 sec-

onds. 

Employing the impulse momentum principle, we obtain 

∫=−
10

0

2 dtmm F0V  

from which we get the velocity after 10s as, V2 kji
4

10
6.1100

2

600

3

10
43

×+







++= m/s. 

Linear Momentum Considerations for a System of Particles 

For a system of n particles, we can write 

2 0
 

100 N 

F (t) 

t (sec) 

1 
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∑
=

=
n

j

j

j
dt

d
m

1

V
F . 

Multiplying both sides by dt and integrating (as before), we obtain 

ij

ii

fj

ii

t

t

mmdt

f

i











−










= ∑∑∫ VVF              [A] 

In the above equation,  

• F is the total external force (as the internal forces cancel off). 

• Thus, the impulse of the total external forces on the system of particles during a time inter-

val equals the sum of the changes of the linear momentum vectors of the particles during 

the time interval. 

Ex: 2.23 A truck weighing 40 kN is moving at 70 km/hr as depicted in Fig. 2.27, when the driver 

suddenly applied brakes at time t = 0. Load A weighing 12 kN broke loose from its ropes and at t 

=3 s, was seen sliding at a speed of 1 m/s relative to the truck. Find the speed of the truck at this 

instance if the coefficient of dynamic friction between the tyres and the road is 0.4. 

      
Figure 2.27 

The various forces shown in the free body diagram are N = 40 + 12 = 52 kN and µd N = 20.8 kN. 

Applying the impulse-momentum principle, we obtain 

( ) ( )
3600

10701052
1

10121040
1020.8

3333
3

3

0

×
×

×
−+

×
+

×
=×−∫ g

V
g

V
g

dt , 

from which we obtain the solution as V = 7.44 m/s = 26.8 km/hr. 

Introducing the centre of mass into Eq. [A] is advantageous at times. Thus, we have 

∑=
i

iic mM rr , 

which on differentiation with respect to time yields 

.∑=
i

iic mM VV  

Thus, the total linear momentum of a system of particles equals the linear momentum of a particle 

that has the total mass of the system and that moves with the velocity of the mass centre. Applying 

this principle in Eq. [A] provides 

( ) ( )
icfc

t

t

MMdt

f

i

VVF −=∫ .           [B] 

 N = 52 kN 

 µd N 

 12kN 

 40kN 
A 
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Single particle model can be thus seen as a special case of the system of particles. Depending on 

whether it is easy to locate the centre of mass or not, one may employ [A] or [B]. 

Ex: 2.24 Two adjacent tanks A and B are shown in Fig. 2.28. Both are rectangular with a width of 

4 m. Petrol from A is being pumped into B. When the level of tank is 0.7 m from top, the rate of 

flow from A to B is 300 litres/s. Ten seconds later it is 500 litres/s. What is the horizontal force 

from the fluid on to the tank during this 10 seconds time interval? Density of petrol is 0.8×10
3
 

kg/m
3
. Tank A is originally full and tank B is originally empty. 

     

Figure 2.28 

At time t, let h1 be the drop of petrol in tank A and h2 be the corresponding rise in tank B. There-

fore, we have:  

h1×6×4 = h2×3×4 or h2 = 2 h1. 

Location of the centre of mass: Taking moments of mass of petrol about the left edge of tank A, we 

get: 

M xc = MA xA + MB xB, 

where xc is the distance of centre of mass from the left edge of tank A. That is:  

6×3×4×ρ×xc = (3 − h1)×6×4×3×ρ + h2×3×4×ρ×7.5. 

Differentiating the above with respect to t, we obtain 

{ }5.73
436

1
×+−

××
= QQxc
� , 

where Q is the rate of flow from tank A to B. That is Q = 6×4× 1h� . From the above we get 
16

Q
xc =� . 

Now, writing the impulse momentum equation, we have 

( ) ( )
12

10

0

cc xMxMdt �� −=∫F , 

which on substitution yields 

Fav×10 = 6×3×4×ρ×{(Q2− Q1)/16}, 

from which we get the solution as Fav = 72 N. 

Conservation of Linear Momentum 

If the total external force on a system of particles is zero, the change in linear momentum is zero. 

Moreover, if the external force continues to be zero (i.e. the impulse is zero), the centre of mass 

remains stationary, if the velocity of the centre of mass is zero at some instance of time. 

IMPULSIVE FORCES 

Forces that act over a very short time such as the one shown in Fig. 2.29, but have appreciable im-

pulse are called impulsive forces. One good example is the explosive loads. 

6 m 3 m 

3 m 

A 

h2 

B h1 
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Figure 2.29 

Due to impulsive force a particle may change its velocity while there is hardly any change in its 

position
1
. Consider a bomb suspended from the ceiling as depicted in Fig. 2.30. After the explosion 

there is hardly any change in the position of the centre of mass as there is no external force act-

ing—although the flying fragments may have high velocities (gravity may be ignored during the 

short interval of time ∆t). 

 

Figure 2.30 

Ex: 2.25 A tennis player during his serve is able to hit the ball when the ball is tossed up and 

reaches a stationary position. He hits the ball with such a force that it starts flying as shown in 

Fig. 2.31 with a speed of 150 km/hr. Estimate the average force imparted by his racquet on the ball 

if the contact time during the serve was 0.005 seconds. The mass of the ball is 58 grams. 

 
Figure 2.31 

                                                 
1
 Since 

max

0

VmtFdtF

t

ar =∆≈∫
∆

, 

we have 

t
m

F
V Ar ∆=max . 

On the other hand,  

∫
∆

∆∆==

t

Ar tt
m

F
dtVx

0

maxmax , 

which is a higher order term when compared to Vmax. 

F(t) 

t 

CM 
CM 

V 

15
o 
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We have Fav ∆t = m V. Therefore Fav = 0.058×(150×10
3
/3600)(cos 15 i − sin 15 j)/0.005 = 

(466.864 i − 125.096 j) N. Magnitude of this average force is Fav = 483.333 N. 

Ex: 2.26 A cannon of weight 9 kN fires a 45 N projectile with a muzzle velocity of 625 m/s at an 

angle of 50
o
 as depicted in Fig. 2.32. Find the maximum compression in the spring if K = 4 kN/m. 

 

Figure 2.32 

The firing takes place in a very short time interval; the force on the projectile and the force on the 

cannon are both impulsive. Thus, the cannon achieves an instantaneous recoil velocity without 

much of a displacement. The linear momentum is conserved as there is no external force. Thus, we 

can write the momentum equation along the x-direction as 

( ) ( ) 0
projectilecannon

=+ xx VmVm . 

If Vc is the velocity of the cannon along the x-direction and Vp that of the projectile, we have 

50cos625+= cp VV . 

Substituting in the momentum equation, we get 

( ) 050cos625
459000

=++ cc V
g

V
g

, 

from which we obtain Vc = −2 m/s.  

After this impulsive action which results in the above instantaneous velocity of cannon, we can use 

conservation of mechanical energy to solve the question. Thus we can write ∆(KE + PE) = 0, 

which leads to  

004000
2

1
2

9000

2

1
0

22 =







−×+








− δ

g
, 

which yields the solution δ = 0.958 m. 

Ex: 2.27 A 1300 kg jeep with 3 persons of mass 100 kg each is being tested to see what is the 

maximum velocity which it can reach on an icy road in 5 seconds. If µs = 0.1, find Vmax. 

The impulse momentum equation yields 

0−=∫ mVdtF . 

That is max160051.01600 Vg =×× . Hence, Vmax = 4.905 m/s (= 17.66 km/hr). 

K 

50
o 

y
 

x
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Figure 2.33 

Impact 
Consider two bodies which collide but do not break. The time interval of impact is usually very 

small. However, large impulsive forces are set in which are equal and opposite. The total linear 

momentum before impact equals the total linear momentum after impact. 

 
Figure 2.34 

Central impact: if the centres of the two masses lie along the line of impact (which is normal to the 

plane of contact), the impact is said to be central. Otherwise it is eccentric. 

Direct central impact: is a central impact in which the velocity vectors V1
 
and V2 are collinear with 

the line of impact. 

Oblique central impact: is one in which one or both the velocity vectors are not collinear with the 

line of impact. 

In any of the above cases, the linear momentum is conserved during the short time of impact. Thus, 

we have 

( ) ( ) ( ) ( ) .22112211 ffii
mmmm VVVV +=+  

In the case of direct central impact, we need one further equation (we have just the above equation, 

which turns out to be a scalar equation for this case). In the case of oblique impact, if we know the 

initial velocity components, we have six unknown velocity components, but only three equations. 

CASE: 1. DIRECT CENTRAL IMPACT: 

 

Figure 2.35 

Consider Fig. 2.35. The total period of collision is composed of (i) period of deformation in which 

the two bodies start deforming from an initial undeformed state, and (ii) a period of restitution in 

1600g×0.1 
1600g 

V1 V2 

Plane of contact 

Line of impact 

1 2 

V1′ V2′ 

Period of collision 

Period of deformation Period of restitution 
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which the bodies start recovering from their deformed state. In the case of perfectly elastic impact 

the recovery is complete as depicted in Fig. 2.35; whereas in the case of inelastic impact the recov-

ery is partial as shown in Fig. 2.36. In a perfectly plastic impact, the two bodies stick together and 

move together after impact. 

 

Figure 2.36 

The impulse during the period of deformation and restitution could be represented by ∫D dt and 

∫R dt respectively. The coefficient of restitution is then defined as the ratio of these impulses. Thus, 

we have the coefficient of restitution 

.

∫
∫

=
dtD

dtR
ε  

The coefficient of restitution ε depends on the material and also on the size, shape and approach 

velocities of the two bodies. However, ε for different materials have been established (without con-

sidering other factors) and can be used for getting approximate results. 

For body 1, if (V1)D is the velocity at maximum deformation, we have 

( ) ( ) ( ) ( )[ ]
DiiD

VVmVmVmdtD 1111111 −−=−=∫ . 

During the period of restitution, we can likewise write 

( ) ( )[ ]∫ −−=
fD

VVmdtR 111 , 

from which we obtain 

( ) ( )
( ) ( )

Di

fD

VV

VV

11

11

−

−
=ε .       [A] 

Similarly, for body 2, we have 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

iD

Df

Di

f

VV

VV

VV

VV

22

22

22

202

−

−
=

−

−
=ε .              [B] 

At the intermediate position—that is at the end of the deformation period and just at the start of 

restitution, the two bodies have the same velocity. Thus, we have 

( ) ( )
DD

VV 21 = . 

Now, since if r
d

c

b

a
== , we have a = br and c = dr. Hence, r = (a − c)/(b − d). From Eqs. [A] and 

[B], we obtain the coefficient of restitution as 

( ) ( )
( ) ( ) approach of velocity relative 

seperation of velocity relative

12

12
−=

−

−
−=

ii

ff

VV

VV
ε . 

This equation along with the linear momentum equation can be used to solve problems. 

Period of collision 

Period of deformation Period of restitution 
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For a perfectly elastic collision, the impulse for during the period of restitution equals the impulse 

during the period of deformation. Thus, restitution here is the reverse of deformation. Hence, ε = 1. 

In the case of an inelastic impact ε < 1 as the impulse is diminished during restitution as the bodies 

are unable to resume their original geometries. For a perfectly plastic impact ε = 0, and the two 

bodies continue to remain in contact as if they are glued. 

CASE: 2. OBLIQUE CENTRAL IMPACT 

Velocity components along the line of impact are related by the scalar components of the equation: 

 ( ) ( ) ( ) ( ) .221122111 ffi
mmmm VVVV +=+  

• Also e.g. [C] along the line of impact can be used (ε − can be considered to be the same as that 

of direct central impact for smooth bodies). 

• Thus, we can solve for the velocity components along the line of impact. 

• For smooth bodies, the other rectangular components of the velocity are unaffected by the im-

pact as no impulses act in their directions or either body. 

Ex: 2.28 Two identical billiard balls collide with velocities as shown in Fig. 2.37. Find their final 

velocities and the loss in kinetic energy. 

 
Figure 2.37 

From Fig. 2.37, we have: V1x|i = 0.5 m/s, V2x|i = −0.707 m/s, and V2y|i = 0.707 m/s. Along the line of 

impact, the linear momentum before impact = 
f

xfx mVVmmm 21707.05.0 +=− , where m is the mass 

of each ball. 

The coefficient of restitution: 
507.7

9.0
12

−−

−
−==

fxfx VV
ε . 

Solving the above two equations simultaneously, we obtain V1x|f = −0.647 m/s and V2x|f = 0.44 m/s. 

Moreover, V2y|f = V2y|i = 0.707 m/s. Hence, the final velocities after impact are 

V1|f  = −0.647 i m/s and V2|f = 0.44 i + 0.707 j m/s. 

The loss in kinetic energy is obtained as 

( ) ( )22

2
12

2
12

2
12

2
1 707.044.0647.015.0 +−−+=− mmmmKEKE

fi
 = 0.0689 m Nm. 

Ex: 2.29 A 50 kg block is dropped onto a 20 kg pan of a spring scale from a height of 500 mm as 

shown in Fig. 2.38. Assuming the impact to be perfectly plastic, determine the maximum deflation 

of the ran K = 30 kN/m. 

x 

0.5 m/s 

1 m/s 

y 

ε = 0.9 
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Figure 2.38 

Velocity at which the block hits the pan can be obtained by using the work-energy equation as: 

( ) ( ) 0505.0002

2
1 =××−+− gmV , 

from which we get V = 3.132 m/s.  

Now, the velocity with which the pan and block start moving downward can be obtained as (note 

that it is a perfectly plastic impact) 50 × 3.132 + 20 × 0 = 70 .cV  Therefore, Vc = 2.237 m/s. 

Lastly, in order to find the maximum deflection of the pan, we use the work-energy equation again 

to get  

( ) ( ) 0103070237.2700 23

2
1

2
12

2
1 =×××+×−××− δδg . 

Solving the above quadratic equation in δ we get the answer as δ = 0.120 mm. 

Moment of Momentum Equation for a Single Particle 

The Newton’s Law can be written as 

( ) PVF �== m
dt

d
, 

where P = mV is the linear momentum of the particle. Consider Fig. 2.39 in which a particle is 

seen moving along a trajectory. Taking moments of the above equation about the point A, we ob-

tain 

.PρFρ �×=× aa  

 
Figure 2.39 

Consider  

( ) PρPρPρ ×+×=× aaa
dt

d
�� . 

Now, aa rρr += . Let A be fixed in location. Hence we have aρr �� = . Therefore, the second term on 

the right hand side of the above equation reduces to naught as 

0ρρrρPρ =×=×=× aaaa mm ����� . 

0.5 m 

50 kg
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ρρρρa 

ra 
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Thus we have 

( ) Pρρ �×=× aa P
dt

d
. 

Using the above in the earlier equation we get 

( )PρFρ ×=× aa
dt

d
, 

which can otherwise be written as 

aa HM �= . 

In the above, Ha is known as the moment of momentum vector about a, or the angular momentum 

vector. The above equation thus corresponds to: “the moment of the external force acting on the 

particle about a fixed point a in an inertial frame of reference Ma equals the time rate of change of 

moment of momentum of the particle about a”. 

A component form of the above equation could be written, for example, as  

zz HM �= ,  

where Mz is the moment of external force about the z-axis, and Hz is the moment of momentum 

again about the z-axis. 

If Ma = 0, it follows that Ha remains a constant. This is the law of conservation of moment of mo-

mentum principle. 

Ex: 2.30 A small ball weighing 1 kg is rotating about a vertical axis at a speed of ω1 =10 rad/s as 

shown in Fig. 2.40. The ball is connected to bearings on the shaft by light inextensible strings hav-

ing a length of 1 m each. The angle θ1 = 30
o
. What is the value of angular velocity ω2 of the ball if 

the bearing A is moved up by 200 mm? 

 
Figure 2.40 

As, Mz = 0, Hz is a constant. Therefore (Hz)1 = (Hz)2, where 

( ) ( ) 1111
rrmHZ ω=  and ( ) ( ) 2222

rrmH Z ω= . 

Since θ1 = 30
o
 and cos θ2 = cos θ1 − 0.1, w get θ2 = 40

o
. Moreover, r1 = 0.5 m and r2 = 0.6428 m. 

Therefore we get ω2 = r1
2

 ω1/ r2
2
 = 6.05 rad/s. 

Ex: 2.31 A small ball attached to the end of a string is supported by a smooth horizontal plane and 

travels with uniform speed V0 in a circular path of radius r as shown in Fig. 2.41. By pulling the 

A 

0.2 m 

1 m 

z 

y 

x 

ω1 
θ1 

B 

r1 
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string at the lower end, the radius of the path is reduced to r/2. What is the new velocity of the 

ball? What is the tension T? 

 
Figure 2.41 

( ) 00 mVr
i

=H  and ( ) 10 2
mVr

f
=H . Since M0 = 0, H0 must remain a constant. Thus, equating these 

two, we obtain V1 = 2 V0. The tension T = m(2V0)
2
/(r/2) = 8 mV0

2
/r. 

Ex: 2.32 A conical pendulum of length l = 2 m rotates with constant angular speed ω in a horizon-

tal circular path of radius r = 100 mm as shown in Fig. 2.42. How much string must be pulled 

through the pedestal to double the speed of the ball? 

 
Figure 2.42 

As zz HM �== 0 , Hz must remain a constant. That is (Hz)i = (Hz)f. Now,  

( ) 1

2

1 ωmrH
iz =  and ( ) 2

2

2 ωmrH
fz = . 

Therefore, ( )1

2

21

2

1 2ωω rr =  from which we obtain 
2

1002
2

2 =r  and rad/s 475.02 12 == ωω . 

Since 633.1tan 2

2

2
2 ==

g

rω
θ , we get θ2 = 58.52

o
. Therefore l2 = 82.91 mm and the answer is l1− l2 

= 117.087 mm. 

Moment of Momentum for a System of Particles 

ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES 

Consider a system of n particles as shown in Fig. 2.43. Let c indicate the centre of mass of the par-

ticles at this instant of time and let a be a fixed point. We would like to derive an expression for the 

moment of momentum of the system of particles about a, viz. Ha. 
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r 

Vo 

O 

T 
mV

2
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Figure 2.43 

Thus we can write 

( ) ( )∑∑ +×+=×=
= i

ciciciac

n

i

iiaia mm ρrρρrρH ���

1

,                                    [A] 

which follows from ρρρρai = ρρρρac + ρρρρci  and ri = rc + ρρρρai as depicted in Fig. 2.43. Expanding Eq. [A], we 

obtain 

( ) ( ) ∑∑∑ ×+×+×+×= ciiciciiaccciicaca mmmM ρρρρrρrρH ���� . 

The second and third terms on the right hand side of the above equation are zero as  

∑ =
i

ciim 0ρ , 

as c is the centre of mass, and hence 

∑ =
i

ciim 0ρ� . 

Therefore, we get 

ccaca M HVρH +×= , 

where Vc is the velocity of the centre of mass (= drc/dt). The first term in the above represents the 

moment of momentum of the centre of mass (i.e. considering the system of particles to be replaced 

by a single particle of mass M = Σi mi. The second term is the moment of momentum of the system 

of particles relative to the centre of mass c about the centre of mass and is given by 

∑ ×=
i

ciicic mρρH � . 

Now, let us start with Eq. [A] again and differentiate the moment of momentum vector Ha with 

respect to time to obtain 

             ( ) ( ) ∑∑ ×++×+=
i

iiai

i

ciciciaca mm rρρrρρH �������  

                   ∑∑∑∑∑
=====

×+×+×+×+×=
n

i

iiai

n

i

ciici

n

i

cici

n

i

ciiac

n

i

ciac mmmmm
11111

rρρρrρρρrρ ����������  

                   ∑∑∑∑
====

×+×+×







+







×+×=

n

i

iiai

n

i

ciicic

n

i

cii

n

i

ciiaccac mmmmM
1111

rρρρrρρρrρ ���������� . 

As c is the centre of mass, the second and third terms on the right hand side of the above equation 

vanish. The third term is zero as it involves the cross-product of a vector by itself. The last term 

can be simplified by considering the Newton’s law for the i
th

 particles as (see Module 1) 
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Taking moments of the above equation about point a, we obtain 
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The last term in the above equation is zero as the moments of the pair of forces fij and fji cancel off. 

Hence, we have  

a

n
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== 11

�� , 

where Ma is the total moment of all the external forces acting on the system of particles. Thus, we 

obtain the following important relationship 

cacaa M rρMH ��� ×+= . 

Now, let us consider the following important cases. 

CASE: 1 THE POINT A IS THE ORIGIN OF AN INERTIAL FRAME: 

In this case, the point a happens to be the origin of the reference O. Therefore cac rρ �� = . Hence, we 

have for this case 

OO MH =� . 

CASE: 2 THE POINT A IS A FIXED POINT IN AN INERTIAL FRAME: 

Here ra + ρρρρac = rc and 0r =a
� . Hence 

cac rρ �� =  and we have 

aa MH =� . 

CASE 3: THE POINT A IS THE MOVING CENTRE OF MASS: 

In this case, point a coincides with c and hence ρρρρac = 0. Therefore, we have 

cc MH =� . 

CASE 4: IF “A” IS ACCELERATING EITHER TOWARDS OR AWAY FROM THE MASS CENTRE: 

In this case too, it can be shown (with a little bit more hard-work) that  

aa MH =� . 

Ex: 2.33 A heavy chain of length 6 m lies on a light plate A which is freely rotating at an angular 

speed of 1rad/s. A channel C acts as a guide for the chain on the plate, and a stationary pipe acts as 

a guide for the chain below the plate. What is the speed of the chain after it moves 1.5 m starting 

from rest relative to the platform? Neglect friction and the angular momentums of the platform and 

the vertical section of the chain about its own axis. The weight of chain is 20 N/m. 

A. TO GET THE ANGULAR SPEED AT THE SECOND INSTANT: 

As zz HM �=  and Mz = 0, we have (Hz)1 = (Hz)2 (i.e the angular momentum is conserved). Thus, 

equating the angular momentum at the two instances, we obtain 
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As 11
ωθ rV =  and 22

ωθ rV = , we get 

∫∫ =
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Since ω1 = 1 rad/s, we get from the above ω2 = 8 rad/s. 

 
Figure 2.44 

B. TO FIND THE SPEED OF MOVEMENT: 

We may use the energy equation ∆PE + ∆KE = 0 as it is a conservative system. Thus, we obtain 

    [20×1.5×3 + 20×4.5×(2.25−1.5) − (20×3×3 + 20×3×1.5)] + 0.5×20/9.81×1.5×V 
2
  

                    + 0.5×20/9.81×4.5×V 
2
 ( )∫+
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drr
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+ ∫
3

0
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1

20

2

1
0 drr

g
ω  = 0, 

which on simplification leads to −11.25 + 6.116 V 
2
 + 64.220 = 0, from which we obtain the solu-

tion as V = 2.809 m/s. 

 ω 

 1.5 m
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 3m
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 Vθ 


