CE2008D STRUCTURAL ANALYSIS I

Winter 2019-20
Homework Assignment - Module: 2
S is your class serial number; bring the completed assignment as and when you return to the campus

1. (a) For the three-span continuous beam shown in Fig. 1, determine all the support reactions and draw the shear force and bending moment diagrams. Given: $E=200 \mathrm{GPa}, I=(4+0.1 \times S) \times 10^{-4} \mathrm{~m}^{4}, w=$ $5+0.4 \times S \mathrm{kN} / \mathrm{m}, P=22+0.5 \times S, Q=32+0.3 \times S$ and $a=1.5 \mathrm{~m}$.

Figure 1
(b) In the above problem, if the support B sinks by 5 mm and the support C sinks by 8 mm , find all the support reactions and draw the shear force and bending moment diagrams. (Hint: The compatibility conditions get modified correspondingly)
2. (a) For the two-span continuous beam shown below in Figure 2, determine all the support reactions and draw the shear force and bending moment diagrams. Given data: $E=200 \mathrm{GPa}, I=(20+0.2 \times S) \times 10^{-4}$ $\mathrm{m}^{4}, w=8+0.3 \times S \mathrm{kN} / \mathrm{m}, P=50+0.4 \times S$ and $a=2 \mathrm{~m}$.

Figure 2
(b) In the above problem, if the support B sinks by 6 mm and the support C sinks by 4 mm , find all the support reactions and draw the shear force and bending moment diagrams. (Hint: The compatibility conditions get modified correspondingly)
(c) [Question for pondering] In the above problem (Fig. 2), if the fixed support at A gives way so that there is a clockwise rotation of 0.0001 rad and the support at B sinks by 6 mm , how will you solve the problem?

