FLUID POWER
Generation, Transmission and Control

Jagadeesha T.
Assistant Professor
Department of Mechanical and Production Engineering
National Institute of Technology, Calicut, Kerala

Dr. Thammaiah Gowda
Professor and Head
Department of Mechanical and Industrial Production Engineering
Adichunchanagiri Institute of Technology, Chickmagalur, Karnataka

WILEY
Jagadeesha T.

Jagadeesha T. is currently working as an Assistant Professor in the Department of Mechanical and Production Engineering at National Institute of Technology (NIT), Calicut (Kerala). He earned his BE (Mechanical) degree from NIT, Surathkal (Karnataka); ME (Machine Tools) degree from PSG college of Technology; Master of Science (Manufacturing and Automation) from National University of Singapore; and Master of Science (AMNS) from Singapore MIT alliance. He is the recipient of the prestigious JRD Tata Scholarship and SMA (Government of Singapore) Scholarship. He has 20 years of experience in the industry, teaching, academic research, consultation, and has excellently completed many projects with reputed organizations. He has worked with TATA Engineering Locomotive Company (India), TVS Suzuki (India), IBM Pvt. Ltd (Singapore), ASM (Singapore), and Applied Materials (Singapore and United States), APP Systems and Services (Singapore), ST Microelectronics (Singapore), Chartered Semiconductor Manufacturing (Singapore), and Sitronics (Singapore). He has developed workbooks on Fluid Power Control, Mechanical Vibration, Machine Design, Machining Science, and IC Engines. He is the co-author of the textbook Mechanical Vibration. He has bagged more than 30 quality suggestion awards at TELCO and Best Employee award three times at ST Microelectronics, Singapore. He teaches Solid Mechanics, Mechanics of Machinery, Dynamics of Machinery, Design of Machine Elements, Fluid Power and Control at NIT Calicut.

Dr. Thammaiah Gowda

Dr. Thammaiah Gowda is presently working as a Professor and Head in the Department of Mechanical and Industrial Production Engineering at Adichunchanagiri Institute of Technology, Chikmagalur (Karnataka). Dr. Gowda obtained his BE (Mechanical) degree from SJCE (University of Mysore), ME (Machine Design) degree from UVCE (Bangalore University), and PhD from UBDT College of Engineering (Kuvempu University). He has more than 40 years of teaching experience. He teaches Mechanical Vibration, FEM, Tribology and Bearing design, Mechanics of Materials, Design of Machine Elements, Kinematics of Machines, Dynamics of Machinery, Automatic Control Engineering, CAD/CAM, Theory of Elasticity and Plasticity at AIT. He has published several research papers in international, national journals and conferences. Dr. Gowda has co-authored the textbook Mechanical Vibration. He has guided seven PhD and MSc students.
Preface

We have written this book for students and engineers in mechanical, production, automobile, and mechatronics engineering who wish to understand fluid power science and apply it in solving the engineering problems. This book is primarily designed for the use of graduate and postgraduate students, as well as students who are preparing for AMIE and various other competitive examinations. For the practicing engineers, it is hoped that this book will be a very useful reference of collected information that will assist in the solution of many problems encountered in the application of fluid power in the industry.

We have endeavored to present the subject in a simple and rational way. In preparation of this book, we have taken advantage of the vast experience gained in the course of our work during the last 30 years. It has been our aim to show the basic principles underlying fluid power by means of providing typical examples. Empirical formulae have been used only when it is not practical to use mathematical analysis. It has been our experience that a sound knowledge of mechanics of fluid is very essential to take up the study of Fluid Power Control and Design. It is expected that the students using this book have completed a course in applied mathematics.

The main objective of writing this book has been to give a clear understanding of the concepts underlying fluid power control. We have strived to teach the subject on a scientific basis, to maintain the physical perceptions in the various derivations and to give the short comprehending solution to a variety of complex problems. The parameters kept in mind while writing the book are coverage of contents to suit syllabi of various Indian Universities, prerequisite knowledge of the user of this book, lucidity of writing, clarity of thoughts and variety of solved and unsolved numerical problems, including problems from competitive examinations.

Despite the importance and relevance of the subject, it is observed that the subject has not been given its justified importance in the undergraduate engineering course curriculum of Indian Technical Institutes. In most cases, the subject has been taught as an elective course. In almost all cases, the subject has been set aside for advanced reading in the postgraduate section. We feel that the subject should be a separate one in the undergraduate level, where fundamentals of physics of fluid power control should be taught with great care and with sufficient mathematical exposure.

Organization of the Book

The 21 self-contained chapters in this book have been systematically organized as follows:

1. **Chapter 1**: This chapter gives a brief introduction to the fluid power industry and then develops the basic concepts for power delivery with fluids. Elementary hydraulic and pneumatic circuit components have been presented along with their advantages and disadvantages.
2. **Chapter 2**: This chapter contains an outline of corpuscular aspects of fluid mechanics and some practical applications.
3. **Chapter 3**: This chapter introduces us to properties and functions of hydraulic fluids normally used in the industry. The primary aspect of this chapter is the determination of properties of fluid. Now the industry has begun to consider the use of less mineral oil content as both supply and environmental issues have started dominating many new applications.
4. **Chapter 4**: This chapter discusses the various governing laws used in fluid power. Students should focus on chapters 2, 3 and 4, as the success of future study depends on these chapters.
5. **Chapter 5**: This chapter deals with various fittings used in fluid power systems. The guidelines to select pipes, hoses and tubings have been discussed in this chapter.
6. **Chapter 6**: In this chapter, various energy losses have been discussed in great detail. It also contains design problems containing all kinds of losses.
7. **Chapter 7**: This chapter discusses the various pumps used in fluid power industries.
8. **Chapters 8 and 9**: These two chapters complement Chapter 7 and are all about the interaction between hydraulic actuators and hydraulic motors.
9. **Chapter 10**: This chapter introduces hyrdostatic transmission systems.
10. **Chapter 11 to Chapter 13**: These chapters introduce various control valves to control direction, pressure and flow.
11. **Chapter 14**: This chapter describes the various circuits and control methods and also the various methods of controlling hydraulic actuators.
12. **Chapter 15:** This chapter involves a more detailed mathematical treatment of a wider range of flow control valves.

13. **Chapter 16:** This chapter presents the linear analysis of the hydraulic systems and servo mechanism.

14. **Chapters 17 and 18:** These chapters deal with proportional control valves and servo valves. In both the chapters, the mechanical aspects of valves, the valve actuation mechanisms and valve performance have been discussed.

15. **Chapter 19:** This chapter is concerned with the storing of fluid energy using accumulators.

16. **Chapter 20:** Characteristics of auxiliary components used in fluid power have been covered in this chapter.

17. **Chapter 21:** This chapter deals with the maintenance of fluid power systems.

Apart from all these, each chapter contains Multiple-Choice Questions, Review Questions, Exercises, Solved Examples, and Frequently Asked Questions of various Indian universities’ examinations (Short-Answer Type). Presentation of the subject in SI units and simple language makes the book useful for effective teaching and application.

Salient Features of the Book

1. Presentation of basic theory in simple and readily understandable form.
2. A balanced presentation of mathematical and concept approaches.
3. Large number of solved problems and unsolved problems picked up from various Indian technical institutes and universities.
4. Each chapter has a concise and comprehensive treatment of topics with strong emphasis on fundamental concepts. A number of theoretical questions and unsolved exercises have been given for practice so as to widen the horizon of comprehension of the topic.

Guidelines for Instructors

This book has been written as textbook for one-semester course in fluid power. It is expected that the course will be taught to undergraduate and graduate students. In most engineering curricula, fluid power control is an elective course. Students interested in machine design, mechatronics, automobile, manufacturing and production engineering make room in their course of study.

We have found that 10 problems in 1 week is an ample assignment. Certain problems can be assigned to the students as the take-home assignment to solve them using MATLAB.

This book is supplemented with solution manual for each chapter. Solution manual contains answers for Review questions and detailed solutions to Exercise problems given at the end of each chapter. This is available on request for instructors. Kindly mail to acadmktg@wiley.com

Guidelines for Students

Mathematics is intimately concerned with the study of Fluid Power. In order to study the characteristics of fluid power systems, students have to resort to understanding the physical meaning and modeling of the system and write the characteristic equations. To solve the fluid power problems by MATLAB, knowledge of matrix algebra is essential. Good knowledge of fluid mechanics is also very much essential to derive full benefit from this textbook.

Although every care has been taken in correcting proofs and checking numerical examples, errors may be present and further suggestions to improve upon remain. We will be highly grateful to the readers for any feedback. Please send your feedback to Jagdishsg@nitc.ac.in

Jagadeesha T.
Thammaiah Gowda
This book took almost a decade in its making. During that period, a multitude of friends, clients, and associates have provided us with support, helped us solidify our ideas regarding the fluid power control theory. We remain ever grateful to all of them. We wish to place on record our deep sense of gratitude to our teachers, our parents and our families for encouraging us to pursue an academic career.

Jagadeesha T. would specifically like to thank his wonderful wife Vasanthi and his son Ramkumar for their love, patience and endless sacrifices. He would also like to thank his sister Prabhavathi T., without whose presence, encouragement and comfort, this textbook would have remained merely a good intention. Acknowledgements are due to several of his close associates and team leaders in India and abroad. These include: Ashok Kumar, Head (Operations), Yogesh Kale, Head (Design) of Harith Grammer (TVS-Suzuki Group), Hosur; Louis Kim, Head (Thin films), Chartered Semiconductor Manufacturing Ltd., Singapore; Guruvaiah, Head (Controls), Shiv Kumar, Head (Fluid power), Trivedi, Head (Machine design) of TELCO, Pune; Ricky Tan, Director (Automation), Md. Johari, Head (Tooling) of IBM Singapore Pvt. Ltd.; N. Sreekanth, Head (CAD/CAM), Kenny Kwan, Head (R&D) of ASM Technologies, Singapore; Joseph Ong, Head (CVD), Stanley Teo, Head (PVD) of ST Microelectronics, Singapore; James Lee, Director (Operations), Melvin Leo, Staff Engineer (Applications), APP Systems and Services, Singapore; Young Yee, Staff engineer (Process), Applied Materials, Korea; Young Yap, Director (Process), Applied Materials, Singapore; Ganesan, Staff Engineer (Equipment), Infineon, Malaysia.

Acknowledgements are also due to several of his colleagues at National Institute of Technology, Calicut. These include Dr. M.N. Bandyopadhyay, Director, who provided ideal learning atmosphere at NIT Calicut; Dr. A. Ramaraju and Dr. R. Sridharan for their encouragement and guidance. His boundless gratitude to Dr. T.J. Sarvoththama Jothi, Dr. Sudhakar Subudhi, Dr. N. Selvaraju and Dr. Mahesh Kumar for their help.

Dr. Gowda wishes to thank his wife M.S. Leelavathy, who stood by him throughout the preparation of the manuscripts with the resulting missed vacations and family weekends. He also wishes to thank his sons Ullas and Uttam, and his brother Paneesha Gowda for their love and affection. His special thanks to H.N. Suresh for his timely assistance.

It takes a team of many people and lots of hard work to create a quality textbook. Thanks most certainly to Wiley India for publishing this book in a short period. Many thanks to Mr. Praveen Settigere (Sr. Manager Acquisitions, Wiley India) who set the tone for excellence and who provided the vision and leadership to create such a quality product. Thanks are also to Ms. Meenakshi Sehrawat (Executive Editor, Wiley India) and Mr. Rupnarayan Das (Associate Editor, Wiley India) who worked long hours to improve our prose and produce this text from the first page of the manuscript to the final, bound product. We would also like to thank Mr. Rakesh Poddar (Production Editor, Wiley India) for meticulously managing the production-related jobs.
Nomenclature

Table 1 | English alphabets

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Symbol</th>
<th>Unit/Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Acceleration, m/s²</td>
<td>p</td>
<td>Pressure, MPa</td>
</tr>
<tr>
<td>A</td>
<td>Area in m²</td>
<td>p<sub>piston</sub></td>
<td>Pressure on piston, MPa</td>
</tr>
<tr>
<td>A<sub>rod</sub></td>
<td>Area of rod in m²</td>
<td>p<sub>rod</sub></td>
<td>Pressure on rod, MPa</td>
</tr>
<tr>
<td>A<sub>piston</sub></td>
<td>Area of piston in m²</td>
<td>p<sub>2</sub></td>
<td>Inlet pressure, MPa</td>
</tr>
<tr>
<td>A<sub>annulus</sub></td>
<td>Area of annulus in m²</td>
<td>p<sub>2</sub></td>
<td>Outlet pressure, MPa</td>
</tr>
<tr>
<td>A<sub>inlet</sub></td>
<td>Area at inlet, m²</td>
<td>q</td>
<td>Flow rate in LPm or m³/s</td>
</tr>
<tr>
<td>A<sub>outlet</sub></td>
<td>Area at outlet, m²</td>
<td>q</td>
<td>Flow rate through valve in LPm or m³/s</td>
</tr>
<tr>
<td>A<sub>v</sub></td>
<td>Area of valve in m²</td>
<td>Δp</td>
<td>Pressure drop in bar, or Pa</td>
</tr>
<tr>
<td>B</td>
<td>Thickness of gear, m</td>
<td>Δp<sub>p</sub></td>
<td>Pressure drop across pump, Pa</td>
</tr>
<tr>
<td>c</td>
<td>Radial clearance</td>
<td>Δp<sub>m</sub></td>
<td>Pressure drop across motor, Pa</td>
</tr>
<tr>
<td>C<sub>d</sub></td>
<td>Coefficient of discharge</td>
<td>R<sub>r</sub></td>
<td>Outer radius of output shaft, m</td>
</tr>
<tr>
<td>C<sub>p</sub></td>
<td>Specific heat, W/kg °C</td>
<td>R<sub>v</sub></td>
<td>Outer radius of vane, m</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of piston, m</td>
<td>Re</td>
<td>Reynolds number, dimensionless</td>
</tr>
<tr>
<td>D<sub>p</sub></td>
<td>Diameter of pipe, m</td>
<td>S</td>
<td>Stroke, s</td>
</tr>
<tr>
<td>D<sub>i</sub></td>
<td>Inside diameter, m</td>
<td>S</td>
<td>Stroke length of piston pumps, m</td>
</tr>
<tr>
<td>D<sub>o</sub></td>
<td>Outside diameter, m</td>
<td>T</td>
<td>Time, s</td>
</tr>
<tr>
<td>D<sub>k</sub></td>
<td>Diameter of ring of vane pump, m</td>
<td>T<sub>c</sub></td>
<td>Time constant, s</td>
</tr>
<tr>
<td>D<sub>c</sub></td>
<td>Diameter of cam ring of vane pump, m</td>
<td>T<sub>q</sub></td>
<td>Torque, Nm</td>
</tr>
<tr>
<td>d</td>
<td>Diameter of rod, m</td>
<td>T<sub>A</sub></td>
<td>Actual torque, Nm</td>
</tr>
<tr>
<td>E</td>
<td>Voltage drop, V</td>
<td>T<sub>T</sub></td>
<td>Theoretical torque, Nm</td>
</tr>
<tr>
<td>E<sub>total</sub></td>
<td>Total energy, J</td>
<td>V<sub>D</sub></td>
<td>Displacement volume, m³</td>
</tr>
<tr>
<td>F</td>
<td>Force applied, N</td>
<td>V<sub>in</sub></td>
<td>Inlet volume, m³</td>
</tr>
<tr>
<td>F<sub>inlet</sub></td>
<td>Force at inlet, N</td>
<td>V<sub>out</sub></td>
<td>Outlet volume, m³</td>
</tr>
<tr>
<td>F<sub>outlet</sub></td>
<td>Force at outlet, N</td>
<td>ΔV</td>
<td>Change in volume, m³</td>
</tr>
<tr>
<td>G</td>
<td>Gain</td>
<td>v<sub>1</sub></td>
<td>Inlet velocity, m/s</td>
</tr>
<tr>
<td>H</td>
<td>Head of fluid in m</td>
<td>v<sub>2</sub></td>
<td>Outlet velocity, m/s</td>
</tr>
<tr>
<td>H<sub>p</sub></td>
<td>Energy input to pump, J</td>
<td>v<sub>forward</sub></td>
<td>Forward velocity of actuator, m/s</td>
</tr>
<tr>
<td>H<sub>m</sub></td>
<td>Energy output from motor, J</td>
<td>v<sub>ret</sub></td>
<td>Retraction velocity of actuator, m/s</td>
</tr>
<tr>
<td>H<sub>L</sub></td>
<td>Energy loss due to friction, J</td>
<td>Z</td>
<td>No. of pistons in piston pumps</td>
</tr>
<tr>
<td>I</td>
<td>Current, A</td>
<td>Z<sub>1</sub></td>
<td>Elevation at inlet, m</td>
</tr>
<tr>
<td>I<sub>h</sub></td>
<td>Length of pipe</td>
<td>Z<sub>2</sub></td>
<td>Elevation at outlet</td>
</tr>
<tr>
<td>K</td>
<td>Roughness factor</td>
<td>X</td>
<td>Horizontal displacement, m</td>
</tr>
<tr>
<td>K<sub>1</sub></td>
<td>Ratio of outside diameter to inside diameter of pipe</td>
<td>Y</td>
<td>Vertical displacement, m</td>
</tr>
<tr>
<td>L</td>
<td>Width of gear teeth, m</td>
<td>Y</td>
<td>No. of pistons in piston pumps</td>
</tr>
<tr>
<td>M</td>
<td>Module of gear, m</td>
<td>Z</td>
<td>Elevation in, m</td>
</tr>
<tr>
<td>n</td>
<td>Revolution per second (RPS)</td>
<td>Z<sub>1</sub></td>
<td>Elevation at inlet, m</td>
</tr>
<tr>
<td>N</td>
<td>Revolution per minute (RPM)</td>
<td>Z<sub>2</sub></td>
<td>Elevation at outlet</td>
</tr>
<tr>
<td>P</td>
<td>Power, W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 | Greek alphabets

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Pressure angle of gear</td>
<td>ω</td>
<td>Angular velocity, rad/s</td>
</tr>
<tr>
<td>β</td>
<td>Bulk modulus, MPa</td>
<td>ω_n</td>
<td>Natural frequency, Hz</td>
</tr>
<tr>
<td>β_e</td>
<td>Effective bulk modulus, MPa</td>
<td>η</td>
<td>Efficiency, %</td>
</tr>
<tr>
<td>μ</td>
<td>Absolute viscosity, cP</td>
<td>η_m</td>
<td>Mechanical Efficiency, %</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity, cSt</td>
<td>η_m^m</td>
<td>Mechanical Efficiency of motor, %</td>
</tr>
<tr>
<td>ρ</td>
<td>Mass density, η_p^m</td>
<td></td>
<td>Mechanical Efficiency of pump, %</td>
</tr>
<tr>
<td>ρ_{oil}</td>
<td>Mass density of oil</td>
<td>η_o</td>
<td>Overall efficiency, %</td>
</tr>
<tr>
<td>ρ_{air}</td>
<td>Mass density of air</td>
<td>θ</td>
<td>Inclination of lever, deg</td>
</tr>
<tr>
<td>ρ_{water}</td>
<td>Mass density of water</td>
<td>θ_1</td>
<td>Inlet temperature, °C</td>
</tr>
<tr>
<td>ρ_{mercury}</td>
<td>Mass density of mercury</td>
<td>θ_2</td>
<td>Outlet temperature, °C</td>
</tr>
<tr>
<td>γ</td>
<td>Specific weight</td>
<td>ϵ</td>
<td>Damping ratio</td>
</tr>
<tr>
<td>γ_{oil}</td>
<td>Specific weight of oil</td>
<td>δ</td>
<td>Logarithmic decrement, m</td>
</tr>
<tr>
<td>γ_{water}</td>
<td>Specific weight of water</td>
<td>μm</td>
<td>Micron</td>
</tr>
<tr>
<td>τ</td>
<td>Shear stress, MPa</td>
<td>ϕ</td>
<td>Inclination of cylinder</td>
</tr>
<tr>
<td>σ</td>
<td>Tensile stress, MPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 | Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>Computer numerically controlled</td>
</tr>
<tr>
<td>NC</td>
<td>Normally closed</td>
</tr>
<tr>
<td>NO</td>
<td>Normally open</td>
</tr>
<tr>
<td>FCV</td>
<td>Flow control valve</td>
</tr>
<tr>
<td>DCV</td>
<td>Direction control valve</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure relief valve</td>
</tr>
<tr>
<td>CF</td>
<td>Coefficient of friction</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>HP</td>
<td>Horse power, HP</td>
</tr>
<tr>
<td>SV</td>
<td>Specific volume, m3/kg</td>
</tr>
<tr>
<td>SG</td>
<td>Specific gravity</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic energy, J</td>
</tr>
<tr>
<td>PE</td>
<td>Potential energy, J</td>
</tr>
<tr>
<td>VI</td>
<td>Viscosity index</td>
</tr>
<tr>
<td>VG</td>
<td>Viscosity grade</td>
</tr>
<tr>
<td>OD</td>
<td>Outer diameter, m</td>
</tr>
<tr>
<td>ID</td>
<td>Inner diameter, m</td>
</tr>
<tr>
<td>FOS</td>
<td>Factor of safety</td>
</tr>
<tr>
<td>WP</td>
<td>Working pressure of hose, MPa</td>
</tr>
<tr>
<td>TF</td>
<td>Transfer function</td>
</tr>
<tr>
<td>BP</td>
<td>Burst pressure of hose, MPa</td>
</tr>
<tr>
<td>HGR</td>
<td>Heat generation rate, W</td>
</tr>
</tbody>
</table>
Contents

About the authors v
Preface vii
Acknowledgements ix
Nomenclature xi

1 Introduction 1

1.1 Introduction 1
1.2 Fluid Power and Its Scope 1
1.3 Classification of Fluid Power Systems 3
1.4 Hydrostatic and Hydrodynamic Systems 4
1.5 History of Fluid Power 4
1.6 Advantages of a Fluid Power System 5
1.7 Disadvantages of a Fluid Power System 6
1.8 Basic Components of a Hydraulic System 6
 1.8.1 Advantages of the Hydraulic System 7
 1.8.2 Disadvantages of the Hydraulic System 8
1.9 Basic Components of a Pneumatic System 8
 1.9.1 Advantages of a Pneumatic System 9
 1.9.2 Disadvantages of a Pneumatic System 9
1.10 Comparison between Hydraulic and Pneumatic Systems 9
1.11 Comparison of Different Power Systems 9
1.12 Future of Fluid Power Industry in India 10
Summary 11
Objective-type Questions 11
Fill in the Blanks 11
State True or False 11
Review Questions 11
Answers 12

2 Properties of Fluid 13

2.1 Introduction 13
2.2 Solids and Fluids 13
 2.2.1 Distinction between a Solid and a Fluid 13
 2.2.2 Distinction between a Gas and a Liquid 13
2.3 Density, Specific Weight, Specific Volume and Specific Gravity 13
 2.3.1 Density 13
 2.3.2 Specific Weight 14
 2.3.3 Specific Volume 15
 2.3.4 Specific Gravity 15
2.4 Pressure 16
 2.4.1 Pressure at the Bottom of a Column of Liquid 17
 2.4.2 Atmospheric Pressure and Absolute Pressure 17
 2.4.3 Gauge Pressure and Absolute Pressure 17
2.5 Compressible and Incompressible Fluids 19
4.6 Bernoulli's Equation from Newton's Law 68
4.7 Bernoulli's Equation from Energy Consideration 68
4.8 The Energy Equation 70
4.9 Elements of Hydraulic Systems and the Corresponding Bernoulli's Equation 70
4.10 Torricelli's Theorem 79
4.11 Siphon 80
Summary 83
Key Equations 83
Objective-Type Questions 84
Fill in the Blanks 84
State True or False 84
Review Questions 84
Exercises 84
Answers 87

5 Distribution of Fluid Power 89

5.1 Introduction 89
5.2 Choice of Distribution 89
5.3 Conductor Sizing 90
5.4 Burst Pressure and Working Pressure 90
5.5 Steel Pipes 91
5.6 Screwed Connections 95
5.7 Steel Tubing 96
5.8 Compression Joints 97
5.9 Plastic Conductors 100
5.10 Flexible Hoses 100
5.10.1 Designation of Hoses 101
5.11 Rotary Couplings 103
5.12 Quick Disconnect Couplings 103
Summary 104
Key Equations 104
Objective-Type Questions 105
Fill in the Blanks 105
State True or False 105
Review Questions 105
Exercises 105
Answers 106

6 Energy Losses in Hydraulic Systems 107

6.1 Introduction 107
6.2 Laminar and Turbulent Flows 107
6.3 Reynolds Number 108
6.4 Darcy–Weisbach Equation 109
6.5 Frictional Losses in Laminar Flow 109
6.6 Frictional Losses in Turbulent Flow 110
6.6.1 Effect of Pipe Roughness 110
6.7 Frictional Losses in Valves and Fittings 111
6.8 Equivalent Length Technique 111
Summary 122
Key Equations 122
Objective-Type Questions 122
7 Hydraulics Pumps

7.1 Introduction

7.2 Classification of Pumps
 7.2.1 Classification Based on Displacement
 7.2.2 Classification Based on Delivery
 7.2.3 Classification Based on Motion

7.3 Pumping Theory

7.4 Gear Pumps
 7.4.1 External Gear Pumps
 7.4.2 Internal Gear Pumps
 7.4.3 Gerotor Pumps

7.5 Lobe Pumps
 7.5.1 Advantages
 7.5.2 Disadvantages
 7.5.3 Applications

7.6 Screw Pumps

7.7 Vane Pumps
 7.7.1 Unbalanced Vane Pump with Fixed Delivery
 7.7.2 Pressure-Compensated Variable Displacement Vane Pump (an Unbalanced
 Vane Pump with Pressure-Compensated Variable Delivery)
 7.7.3 Balanced Vane Pump with Fixed Delivery
 7.7.4 Advantages and disadvantages of Vane Pumps
 7.7.5 Expression for the Theoretical Discharge of Vane Pumps

7.8 Piston Pumps
 7.8.1 Bent-Axis-Type Piston Pump
 7.8.2 Swash-Plate-Type Piston Pump
 7.8.3 Radial Piston Pump
 7.8.4 Volumetric Displacement and Theoretical Flow Rate of an Axial Piston Pump

7.9 Comparison of Hydraulic Pumps

7.10 Pump Performance

7.11 Pump Performance Curve

7.12 Pump Noise

7.13 Pump Cavitation
 7.13.1 Factors Causing Cavitation
 7.13.2 Rules to Eliminate (Control) Cavitation

7.14 Pump Selection
 7.14.1 Maximum Operating Pressure
 7.14.2 Maximum Delivery
 7.14.3 Type of Control
 7.14.4 Pump Drive Speed
 7.14.5 Types of Fluid
 7.14.6 Fluid Contamination
 7.14.7 Pump Noise
 7.14.8 Size and Weight of a Pump
 7.14.9 Efficiency
 7.14.10 Cost
8 Hydraulic Actuators

Learning Objectives 165
8.1 Introduction 165
8.2 Types of Hydraulic Cylinders 165
 8.2.1 Single-Acting Cylinders 165
 8.2.2 Double-Acting Cylinder 165
 8.2.3 Telescopic Cylinder 167
 8.2.4 Tandem Cylinder 168
8.3 Standard Metric Cylinders 172
8.4 Cylinder Force, Velocity and Power 173
8.5 Acceleration and Deceleration of Cylinder Loads 175
 8.5.1 Acceleration 175
8.6 Various Methods of Applying Linear Motion Using Hydraulic Cylinders 179
8.7 First-, Second- and Third-Class Lever Systems 186
 8.7.1 First-Class Lever System 186
 8.7.2 Second-Class Lever System 187
 8.7.3 Third-Class Lever System 187
8.8 Cylinder Cushions 191
 8.8.1 Cushioning Pressure 192
 8.8.2 Maximum Speeds in Cushioned Cylinders 193
8.9 Cylinder Mountings and Strength Calculations 195
 8.9.1 Piston Rod Ends 196
 8.9.2 Protective Covers 196
 8.9.3 Piston Rod Buckling 196
8.10 Design of Cylinder Barrel 198
 8.10.1 Cylinder Expansion Due to Hoop Stress 198
Summary 199
Key Equations 199
Objective-Type Questions 200
Fill in the Blanks 200
State True or False 200
Review Questions 200
Exercises 201
Answers 202

9 Hydraulic Motors

Learning Objectives 205
9.1 Introduction 205
9.2 Applications 205
9.3 Comparison Between a Hydraulic Motor and an Electric Motor 206
9.4 Classification of Hydraulic Motors 206
9.5 Gear Motors 206
9.6 Vane Motors 207
9.7 Piston Motors 208
 9.7.1 Axial Piston Motors 208
 9.7.2 Bent-Axis Piston Motors 209
 9.7.3 Radial Piston Motors 210
9.8 Semi-Rotary Actuators 211
 9.8.1 Vane-Type Semi-Rotary Actuator (Single Vane) 211
 9.8.2 Two-Vane-Type Semi-Rotary Actuator 211
 9.8.3 Analysis Of a Semi-Rotary Single-Vane Motor 211
9.9 Chain and Sprocket Semi-Rotary Actuator 212
9.10 Rack and Pinion Rotary Actuator 213
9.11 Hydraulic Motor: Theoretical Torque, Power and Flow Rate 213
9.12 Performance of Hydraulic Motors 214
9.13 Performance Curves for a Variable Displacement Motor 215
Summary 222
Key Equations 222
Objective-Type Questions 223
Fill in the Blanks 223
State True or False 223
Review Questions 223
Exercises 223
Answers 224

10 Hydrostatic Transmission 225
10.1 Introduction 225
10.2 Advantages of a Hydrostatic Transmission 225
10.3 Components of a Hydrostatic Transmission System 225
10.4 Analysis of a Hydrostatic System 226
 10.4.1 Pump Characteristics 226
 10.4.2 Motor Characteristics 227
 10.4.3 Variable-Capacity Pump/Fixed-Capacity Motor Unit 229
 10.4.4 Fixed-Capacity Pump/Variable-Capacity Motor Unit 234
 10.4.5 Variable-Capacity Pump/Variable-Capacity Motor Unit 237
Summary 251
Key Equations 252
Objective-Type Questions 252
Fill in the Blanks 252
State True or False 252
Review Questions 253
Exercises 253
Answers 253

11 Directional Control Valves 255
11.1 Introduction 255
11.2 Directional Control Valves 255
 11.2.1 Classification of DCVs based on Fluid Path 256
 11.2.2 Classification of DCVs based on Design Characteristics 256
 11.2.3 Classification of DCVs based on the Control Method 256
 11.2.4 Classification of DCVs based on the Construction of Internal Moving Parts 256
11.3 Actuating Devices 258
11.4 Check Valve 260
11.4.1 Advantages of a Poppet Valve
11.4.2 Disadvantages of a Poppet Valve
11.5 Pilot-Operated Check Valve
11.6 Shuttle Valve
11.7 Two-Way Direction Control Valves
 11.7.1 2/2-Way DCV (Normally Closed)
 11.7.2 2/2-Way DCV (Normally Opened)
 11.7.3 Application of 2/2 DCV
11.8 Three-Way Direction Control Valves
 11.8.1 3/2-Way DCV (Normally Closed)
 11.8.2 3/2-Way DCV (Normally Opened)
 11.8.3 Applications of 3/2 DCV and 3/3 DCV
11.9 Four-Way Direction Control Valves
 11.9.1 Applications of 4/2 DCV and 4/3 DCV
11.10 Solenoid-Actuated Valve
11.11 Pilot-Operated Direction Control Valves
 11.11.1 Applications of Pilot-Operated Valve to Control the Table of a Surface Grinder
11.12 Piston Overlap
11.13 Miscellaneous Industrial Circuits
11.14 Direction Control Valve Mounting
11.15 DCV Specifications
11.16 Material for DCVs
Summary
Key Equations
Objective-Type Questions
Fill in the Blanks
State True or False
Review Questions
Exercises
Answers

12 Pressure-Control Valves
Learning Objectives
12.1 Introduction
12.2 Pressure-Relief Valves
 12.2.1 Simple Pressure-Relief Valve
 12.2.2 Compound Pressure Relief Valve (Pilot-Operated Pressure Relief Valve)
12.3 Pressure-Reducing Valve
12.4 Unloading Valves
 12.4.1 Direct-Acting Unloading Valve
 12.4.2 Pilot-Operated Unloading Valve
12.5 Counterbalance Valve
 12.5.1 Application of a Counterbalance Valve
12.6 Source of Pilot Pressure in Counterbalance Valves
12.7 Pressure Sequence Valve
 12.7.1 Application of a Sequence Valve
12.8 Cartridge Valves
 12.8.1 Poppet-Type Cartridge Valves
Summary
Key Equations
Objective-Type Questions
Fill in the Blanks
13 Flow-Control Valves

13.1 Introduction
- Functions of Flow-Control Valves
- Classification of Flow-Control Valves

13.2 Speed-Controlling Circuits
- Meter-In Circuit
- Meter-Out Circuit
- Bleed-Off Circuit

Summary
Key Equations
Objective-Type Questions
Fill in the Blanks
State True or False
Review Questions
Exercises
Answers

14 Hydraulic Circuit Design and Analysis

14.1 Introduction

14.2 Control of a Single-Acting Hydraulic Cylinder

14.3 Control of a Double-Acting Hydraulic Cylinder

14.4 Regenerative Cylinder Circuit
- Expression for the Cylinder Extending Speed
- Load-Carrying Capacity During Extension

14.5 Pump-Unloading Circuit

14.6 Double-Pump Hydraulic System

14.7 Counterbalance Valve Application
- Valve Operation (Lowering)
- Valve Operation (Lifting)
- Valve Operation (Suspension)

14.8 Hydraulic Cylinder Sequencing Circuits

14.9 Automatic Cylinder Reciprocating System

14.10 Locked Cylinder Using Pilot Check Valves

14.11 Cylinder Synchronizing Circuits
- Cylinders in Parallel
- Cylinders in Series

14.12 Speed Control of a Hydraulic Cylinder
- Analysis of Extending Speed of Cylinder (Controlled)
- Meter-In Versus Meter-Out Flow-Control Valve Systems
- Speed Control of a Hydraulic Motor

14.13 Fail-Safe Circuits

14.14 Circuit for Fast Approach and Slow Die Closing

14.15 Rapid Traverse and Feed, Alternate Circuit

Summary
Key Equations
Objective-Type Questions
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill in the Blanks</td>
<td>374</td>
</tr>
<tr>
<td>State True or False</td>
<td>374</td>
</tr>
<tr>
<td>Review Questions</td>
<td>375</td>
</tr>
<tr>
<td>Exercises</td>
<td>375</td>
</tr>
<tr>
<td>Answers</td>
<td>377</td>
</tr>
<tr>
<td>15 Flow and Force Analysis of Valves</td>
<td>379</td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>379</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>379</td>
</tr>
<tr>
<td>15.2 Four-Way Spool Valves</td>
<td>379</td>
</tr>
<tr>
<td>15.2.1 Critical Center Valve</td>
<td>379</td>
</tr>
<tr>
<td>15.2.2 Open Center Valve (Underlapped Four-Way Valve)</td>
<td>381</td>
</tr>
<tr>
<td>15.3 Three-Way Spool Valves</td>
<td>382</td>
</tr>
<tr>
<td>15.3.1 Critical Center Valve</td>
<td>382</td>
</tr>
<tr>
<td>15.3.2 Open Center Valve (Underlapped Three-Way Valve)</td>
<td>384</td>
</tr>
<tr>
<td>15.4 Flapper Nozzle Valve</td>
<td>384</td>
</tr>
<tr>
<td>15.5 Special-Purpose Valves</td>
<td>386</td>
</tr>
<tr>
<td>15.5.1 Poppet Valves</td>
<td>386</td>
</tr>
<tr>
<td>15.5.2 Single-Stage Relief Valve</td>
<td>387</td>
</tr>
<tr>
<td>15.6 Pressure-Compensated Flow-Control Valve</td>
<td>388</td>
</tr>
<tr>
<td>15.6.1 Forces</td>
<td>388</td>
</tr>
<tr>
<td>15.6.2 Flow Rates</td>
<td>389</td>
</tr>
<tr>
<td>Summary</td>
<td>392</td>
</tr>
<tr>
<td>Key Equations</td>
<td>392</td>
</tr>
<tr>
<td>Objective-Type Questions</td>
<td>392</td>
</tr>
<tr>
<td>Fill in the Blanks</td>
<td>392</td>
</tr>
<tr>
<td>State True or False</td>
<td>392</td>
</tr>
<tr>
<td>Review Questions</td>
<td>393</td>
</tr>
<tr>
<td>Exercises</td>
<td>393</td>
</tr>
<tr>
<td>Answers</td>
<td>394</td>
</tr>
<tr>
<td>16 Dynamic Analysis of Fluid Systems</td>
<td>395</td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>395</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>395</td>
</tr>
<tr>
<td>16.2 First-Order Systems</td>
<td>395</td>
</tr>
<tr>
<td>16.3 First-Order Fluid System</td>
<td>396</td>
</tr>
<tr>
<td>16.4 First-Order Electrical System</td>
<td>396</td>
</tr>
<tr>
<td>16.5 First-Order Fluid Hydraulic Servomechanism</td>
<td>397</td>
</tr>
<tr>
<td>16.5.1 The First-Order Equation</td>
<td>398</td>
</tr>
<tr>
<td>16.5.2 The Step Input</td>
<td>398</td>
</tr>
<tr>
<td>16.5.3 Response as a Function of Time</td>
<td>399</td>
</tr>
<tr>
<td>16.5.4 Ramp Input and Response for the First-Order Systems</td>
<td>399</td>
</tr>
<tr>
<td>16.5.5 Harmonic Input and Response</td>
<td>400</td>
</tr>
<tr>
<td>16.5.6 Harmonic Response of First-Order Systems</td>
<td>400</td>
</tr>
<tr>
<td>16.6 Graphical Representations</td>
<td>402</td>
</tr>
<tr>
<td>16.7 Harmonic Response Locus</td>
<td>403</td>
</tr>
<tr>
<td>16.8 Logarithmic Plots</td>
<td>403</td>
</tr>
<tr>
<td>Summary</td>
<td>410</td>
</tr>
<tr>
<td>Key Equations</td>
<td>410</td>
</tr>
<tr>
<td>Objective-Type Questions</td>
<td>411</td>
</tr>
<tr>
<td>Fill in the Blanks</td>
<td>411</td>
</tr>
<tr>
<td>State True or False</td>
<td>411</td>
</tr>
<tr>
<td>Review Question</td>
<td>411</td>
</tr>
</tbody>
</table>
19 Accumulators

19.1 Introduction 457
19.2 Accumulator Selection
 - 19.2.1 Sizing Accumulators for Isothermal Condition 461
 - 19.2.2 Sizing Accumulators for Adiabatic Condition 462
 - 19.2.3 Sizing Accumulators for Emergency Reserve 462
 - 19.2.4 Sizing Accumulators for Pulsation Damping 462
 - 19.2.5 Sizing Accumulators for Hydraulic Line Shock Damping 462
 - 19.2.6 Sizing of Additional Gas Bottles 463
19.3 Applications of Accumulators 463
Summary 474
Key Equations 474
Objective-Type Questions 474
Fill in the Blanks 474
State True or False 475
Review Questions 475
Exercises 475
Answers 476

20 Accessories Used in Fluid Power Systems

20.1 Introduction 477
20.2 Functions of Seals 477
 - 20.2.1 Classification of Hydraulic Seals 477
20.3 Durometer Hardness Tester 482
20.4 Reservoirs
 - 20.4.1 Features of a Hydraulic Reservoir 483
 - 20.4.2 Types of Reservoirs 484
 - 20.4.3 Sizing of the Reservoir 484
 - 20.4.4 Reservoir Design and Construction 486
20.5 Fluid Conditioners 487
 - 20.5.1 Centralized Hydraulic System 487
 - 20.5.2 Individual versus Centralized Systems 487
20.6 Filters and Strainers
 - 20.6.1 Causes of Contamination 488
 - 20.6.2 Types of Filters 489
 - 20.6.3 Beta Ratio of Filters 492
20.7 Heat Exchangers
 - 20.7.1 Sizing of Heat Exchangers 493
Summary 501
key equations 501
Objective-Type Questions 502
Fill in the Blanks 502
State True or False 502
Review Questions 502
Exercises 503
Answers 503
21 Maintenance of Fluid Power Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objectives</td>
<td>505</td>
</tr>
<tr>
<td>21.1 Introduction</td>
<td>505</td>
</tr>
<tr>
<td>21.2 The Importance of Cleanliness</td>
<td>506</td>
</tr>
<tr>
<td>21.3 Importance of Oil and Filter Changes</td>
<td>506</td>
</tr>
<tr>
<td>21.3.1 Draining the System</td>
<td>506</td>
</tr>
<tr>
<td>21.3.2 Cleaning and Flushing the System</td>
<td>506</td>
</tr>
<tr>
<td>21.3.3 Filling the System</td>
<td>506</td>
</tr>
<tr>
<td>21.3.4 Preventing Leaks</td>
<td>506</td>
</tr>
<tr>
<td>21.3.5 Preventing Overheating</td>
<td>507</td>
</tr>
<tr>
<td>21.4 Problems Caused By Gases in Hydraulic Fluids</td>
<td>507</td>
</tr>
<tr>
<td>21.4.1 Free Air</td>
<td>507</td>
</tr>
<tr>
<td>21.4.2 Entrained Gas</td>
<td>507</td>
</tr>
<tr>
<td>21.4.3 Dissolved Air</td>
<td>507</td>
</tr>
<tr>
<td>21.5 Troubleshooting Guides</td>
<td>508</td>
</tr>
<tr>
<td>21.5.1 Fluid Maintenance</td>
<td>508</td>
</tr>
<tr>
<td>21.5.2 In-Operation Care of Hydraulic Fluid</td>
<td>508</td>
</tr>
<tr>
<td>21.6 General Safety Rules for Electricity and Electronics</td>
<td>512</td>
</tr>
<tr>
<td>21.6.1 Solenoid Valves</td>
<td>513</td>
</tr>
<tr>
<td>21.7 Maintaining and Disposing of Fluids</td>
<td>515</td>
</tr>
<tr>
<td>Summary</td>
<td>515</td>
</tr>
<tr>
<td>Objective-Type Questions</td>
<td>515</td>
</tr>
<tr>
<td>Fill in the Blanks</td>
<td>515</td>
</tr>
<tr>
<td>State True or False</td>
<td>516</td>
</tr>
<tr>
<td>Review Questions</td>
<td>516</td>
</tr>
<tr>
<td>Answers</td>
<td>516</td>
</tr>
</tbody>
</table>

Appendix A | 517 |
Appendix B | 527 |
Appendix C | 529 |
Appendix D | 531 |
Appendix E | 535 |
Glossary | 537 |
Frequently Asked Questions | 543 |